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Abstract Radio Quiet Zones (RQZs) have been established to prevent radio sources from causing harmful
interference to sensitive radio telescopes, which study extremely faint cosmic radio waves. Even with strict
regulations, such interference is growing due to the widespread use of consumer electronics, emitting in many
different frequency bands, including Wifi, Bluetooth. Removal of interferers is often a matter of sending trucks
with spectrum analyzers to perform localization, using signal power-based localization techniques, a human-
intensive process. We present TranQuiL, a novel long-range detection and localization system that can detect
and localize an interfering transmitter at large distances. Our key innovation is the development of an improved
beacon packet detection pipeline, which enables significant range improvement. We implement and evaluate
our system for an interfering WiFi and Bluetooth transmitter across two testbeds: (a) the Green Bank
Observatory in West Virginia and (b) around a large manufacturing facility in a major U.S. city. We demonstrate
a localization accuracy of 13.2 m in both test beds from 950 m away for WiFi transmitters and 450 m for
Bluetooth transmitters, sufficient for building-scale identification of the interferer's location.

Plain Language Summary Just as optical telescopes provide information about cosmic events by
capturing images of astronomical objects, radio telescopes capture RF signals radiated by astronomical objects.
These signals are crucial in conducting research on the astrophysical processes taking place in space. Since these
signals are transmitted from outer space, they have very low signal power and thus—require very sensitive
receivers on Earth to effectively capture the underlying information. However, over the years, we have observed
an increasing proliferation of various terrestrial wireless communication technologies around the world. These
transmitters are much closer to the radio telescopes relative to the astrophysical sources and thus their
transmissions can corrupt the low-energy signals radiated from astrophysical sources. To prevent this, radio
spectrum regulators around the world have established regulations that limit and prohibit the operation of
wireless transmitters near radio telescopes in areas spanning hundreds of kilometers in diameter. These areas are
called Radio Quiet Zones (RQZs). However, enforcing these regulations with the ever-increasing proliferation
of wireless technologies is quite difficult. In the presence of an existing interfering wireless transmitter in an
RQZ, radio telescope operators need to send out moving vehicles that travel across the whole RQZ while
scanning for high powered signals, so that they can pinpoint the location of the interfering transmitter. Due to the
limited range of scanning (about 100 m), it takes a long time to move around an RQZ area spanning hundreds of
kilometers. In this article, we present a novel scanning mechanism that increases the range of scanning across
various technologies. This enables radio telescopes to significantly reduce the overall search time required to
pinpoint the location of the transmitter. This scanning mechanism exploits specific signal properties such as
periodicity to improve the range. We evaluate the effectiveness of this scanning algorithm with WiFi and
Bluetooth technologies as interference at two different locations: (a) An actual radio astronomy telescope
located in West Virginia, the Green Bank Observatory, and (b) around a large manufacturing facility in
Pittsburgh. We observe that we can pinpoint the location of interference with an accuracy of 13.2 m at arange of
950 m for WiFi (9.5x improvement) and 450 m for Bluetooth (4.5x improvement).

1. Introduction

Governments around the world have established Radio Quiet Zones (RQZs), spanning areas a few square kilo-
meters to ensure no or minimal radio operation in an area sur-rounding radio astronomy observatories. This is
done to minimize the radio frequency interference (RFI) to sensitive radio equipment at these radio telescopes,
enabling continuous scientific research on cosmic radiations from space. As the number of IoT devices continues
to increase, radio frequency interference (RFI) is expected to become more severe in the coming years. Even
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Figure 1. Area covered by the trucks for Detection and Localization of interfering transmitter: (a) Without TranQuiL, trucks
have to move around for a longer time and (b) In the presence of TranQuiL, moving trucks can finish the localization with
minimal movement.

though transmissions are power-limited or prohibited by law in RQZs (Cohen et al., 2003), they frequently
experience stray interferers, such as WiFi access points, Bluetooth in cars, etc., often deployed due to lack of
awareness or accidently (Bhattacharjee, 2010; Porko, 2011; RFI Scans, 2022).

This paper explores a scalable approach to detect and locate such errant interferers in RQZs. We focus primarily
on WiFi and Bluetooth—two technologies operating on licensed spectrum that are highly common and
challenging-to-address interferers to radio astronomy (Bhattacharjee, 2010; Porko, 2011). Indeed, while there is
rich literature on WiFi and Bluetooth-based localization (Ayyalasomayajula et al., 2018; Bahl et al., 2000; Kotaru
etal., 2015; Luo & Hsiao, 2019; Singh et al., 2018; Thompson et al., 2009; Wisanmongkol et al., 2019; Youssef &
Agrawala, 2005), these are limited in localization range to 100 m (i.e., the traditional range limit of WiFi and
Bluetooth Low Energy (BLE)). However, radio astronomy telescopes are known to be impacted by very low-
powered interference, only 16 km away (Series, 2021) with astronomical signals having minuscule power
levels in the order of 107> W/m>. Thus, current approaches to locating such interferers in RQZs are fairly
primitive. For example, the Green Bank Radio Observatory (Emberson, 1959) in West Virginia, one of the major
radio observatories in the US, uses trucks with spectrum analyzers that drive around the facility in search of
interferers based on RSSI values. This process is both time-consuming and inaccurate, especially over a large area
(Mirror Article, 2022), primarily because the vehicle can only scan a short range around itself at any given time
(see the left panel of Figure 1). Ideally, one would like an approach that further enhances the sensing range of
these trucks that allows them to scan wide areas at each time and quickly pinpoint the interferer, saving un-
necessary scouring of the environment (see Figure 1, right).

This chapter presents TranQuiL (TRANsmission QUlIeting through Localization), a system that seeks to over-
come the range limitations of traditional localization techniques with a focus on locating interferers of radio
astronomy. To the best of our knowledge, TranQuiL is the first radio quiet zone enforcement system that performs
long-range detection and localization of WiFi and Bluetooth sources, at the range of 950 m for WiFi and 450 m for
Bluetooth. TranQuiLL was evaluated in two wide-area testbeds: (a) The Green Bank Radio Observatory; (b) A
large manufacturing facility in a major U.S. city. Across both testbeds, TranQuiL shows a median accuracy of
13.2 m (about building-scale).

At ahigh level, TranQuiL localizes interfering transmitters by measuring the difference in the time of arrival of its
signal to a pair of receivers (each on different trucks)—that is, the Time Difference of Arrival (TDoA). Indeed,
TDoA measurements can be tracked as the trucks move over time to assist in trilaterating the location of the
interfering source. While TDoA is a well-studied technique (Jamali-Rad & Leus, 2013; Kaune, 2012; Yang
et al., 2019), TranQuiL's main challenges stem from the significantly long range from which it needs to locate
interfering transmitters. First, at such long ranges, packets from the WiFi and Bluetooth transmitter sources are
simply undetectable and buried below the noise. Second, signal multipath becomes much more challenging to
account for. We elaborate on these challenges below:

Packet Detection at Long Range: Prior to localization, one must first detect the transmitter packets. However,
traditional packet detection algorithms require close proximity to the interferer, resulting in time-consuming
searches. To this end, TranQuiL relies on transmissions that are very common across multiple wireless
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technologies that are easier to detect at a longer range: advertising beacons. While beacon packets from each
technology contain different and unique fields, most fields exhibit predictable patterns over time. This allows
TranQuiL to essentially “brute-force” explore the received signals for these predictable fields, thereby increasing
the preamble size. Furthermore, beacons are sent periodically—theoretically allowing for TranQuiL to improve
beacon detection with time. However, due to clock imperfections, every beacon packet experiences random jitter
around the expected time period of transmission, considerably degrading packet detection, especially when the
received signals are below the noise floor. The key challenge, therefore, is to first align these beacons with one
another within a reasonable timeframe and under the available computational constraints. To address this, Tran-
QuiL builds on a signal processing technique used for time-series similarity applications called Dynamic Time
Warping (DTW). If we divide the received signal into chunks each with the same length as the beacon period, the
resultant groups should be very similar to each other (except for some jitter). TranQuiL then uses DTW to extract
the most similar chunks among these signals and performs sample-level alignment of the chunks. Section 4
elaborates on how TranQuiL performs coherent combination of these aligned chunks to enhance beacon packet
detection.

Long-Range Multipath Mitigation: Next, we consider a challenge common to localization systems—signal
multipath. At long distances from an interfering transmitter source, multipath remains challenging, both due to
the increased number of potential reflection sources and the signal attenuation of the direct path. TranQuiL
addresses this challenge using two key properties—among the various signal paths as the receiving truck moves,
the Line-of-Sight (LOS) path and reflections from dominant reflectors remains the most consistent and least
impacted by changes in the environment. We leverage this consistency to render multipath sparse. Next, we use
the terrain information at the receiver locations to further extract the LOS path from the sparse multipath present.
Note that exploiting the consistency of LOS paths has been explored in the literature (Xiong & Jamieson, 2013;
Wang & Katabi, 2013) to remove multipath from the AoA spectrum in indoor scenarios. In contrast, TranQuiL.
develops its own consistency metric for TDoA, tailored to the physical constraints of truck movement.

Evaluation at a Radio Quiet Zone: We have evaluated TranQuiL at Green Bank Observatory, a Radio Quiet Zone
in West Virginia. Green Bank enforces a strict bar on deploying any transmitters around the radio observatory. To
comply with this policy, we conducted TranQuiL's experiments during a limited 3-week window (its annual
maintenance period) to evaluate TranQuiL, through careful coordination and with relevant permissions from the
RQZ administrators. We implemented TranQuiL on a 2 sq. km testbed at the Green Bank Radio Observatory and
a 1.33 sq. km testbed near a manufacturing facility in a major U.S. city. We used two USRP N210s spectrum
analyzers and moved them around to emulate multiple distributed receivers, ensuring that they are GPS-
synchronized in time and frequency. While our approach is general to any technology that uses beacon
packets and can be extended to non-beacon packets, we primarily focus on WiFi and Bluetooth. We discuss how
TranQuiL can be extended to non- beacon technologies as well. We implement TranQuiL. with an ASUS AC2900
WiFi router as the interfering WiFi transmitter and the nRF5340 kit for Bluetooth. We show:

1. A median error in Time Difference of Arrival (TDoA) of 17.75 and 9.16 m respectively in the Green Bank
observatory and manufacturing facility.

2. A median localization error of 17.4 and 9.1 m respectively in Green Bank and the manufacturing facility.

3. An increase of 9.5 X in the WiFi detection range and of 4.5 X in the Bluetooth detection range compared to
state-of-the-art detection algorithms.

Contributions: The contributions of this paper are as follows:

1. To the best of our knowledge, our method implements the first long-range detection and localization system to
enforce RQZ regulations that achieves an accuracy of 13.2 m.

2. Development of enhanced beacon packet detection at 950 m range for WiFi and 450 m for Bluetooth.

3. A detailed experimental evaluation at an actual Radio Quiet Zone (RQZ), the Green Bank Radio Observatory.

2. Primer on Radio Quiet Zones

From tracking the rotation of Earth to uncovering the secrets of Sagitarrius A (Remijan et al., 2002), the massive
black hole at the center of our galaxy, radio observatories have been indispensable for scientific research. One
such observatory in Green Bank, West Virginia is home to the world's largest 100-m fully steerable single-dish
radio telescope (see Figure 2a).

BANSAL ET AL.

3 of 20

85UB017 SUOLILLOD 3A (810 3(edldde aup Aq pausencb ae sapie YO ‘8sN JO S3|NJ oy Akeid 18Ul U0 8|1 UO (SUOIPUOO-pUe-SW.S} W0 A8 | 1M AteJq1jput|uo//Sdny) SUORIPUOD pUe sWe | 84 83S *[9202/20/ET] Uo AriqiTauliuo AB|IM ‘2E2800SHSZ02/620T OT/I0p/Woo A 1M Aeiq put|uo'sgndnbe//sdny woiy papeojumod ‘T ‘9202 ‘X66.L776T



V od |
AGU

ADVANCING EARTH
AND SPACE SCIENCES

Radio Science 10.1029/2025RS008237

(®)

° 7 =dy/c 1)
. Moving Receiver 1
02 - L d HA x g

rowm|
TDoA() = 1, — 1, N
RFI Scans — March 12t", 2022 Moving Receiver 2

(b) ©

Average Intensity (jy)

Figure 2. (a) Fully steerable single-dish radio telescope at Green Bank (b) RFI Scans in the S-band (Above 2 GHz) taken on
12 March 2022, publicly available on Green Bank website (c) Time Difference of Arrival (TDoA).

The need for Radio Quiet Zones (RQZs): A major challenge faced by radio observatories is Radio Frequency
Interference (RFI) from WiFi, Bluetooth, etc. Astronomical radio waves are extremely weak at powers of
10732 W/m? per Hz (RFI Scans, 2022). For reference, a typical WiFi router transmits power of about 10™° W/m?
at a 1 km distance, which is 23 orders of magnitude stronger than astronomical radio waves, rendering the latter
unmeasurable. To alleviate these concerns, Radio Quiet Zones (RQZs) (at tens of kilometers radius) around
observatories (Rfi Mitgation at Green Bank, 2023; Sizemore & Acree, 2002; West Virginia Radio Astronomy
Zoning Act, 2022) highly restrict radio operations.

Why is Interference at the 2.4 GHz ISM band critical? Despite these regulations, enforcing them is quite chal-
lenging. As radio devices proliferate, radio observatories continually suffer from stray interferers. This is
particularly true for ISM band technologies such as WiFi and Bluetooth, which are often deployed accidently or
without awareness. Indeed, ISM interference is a bigger challenge compared to most other advanced radio
communications (e.g., cellular) where accidental deployments are unlikely (see RFI Table:-(RFI Reports Ta-
ble, 2023)). The 2.4 GHz ISM band and adjacent frequencies carry valuable data critical to key astronomical
observations (Padovani, 2016; Vernstrom et al., 2016) that are irreparably damaged by terrestrial interference.
Figure 2b demonstrates this with high interference at the 2.4 GHz ISM bands in RFI scans collected by the Green
Bank Observatory. Indeed, several studies in the literature (Bhattacharjee, 2010; Porko, 2011) highlight how these
technologies impede radio astronomy.

Current solutions are slow and inefficient: To address sporadic interference, radio observatories can pre-process
the data to filter it out. However, persistent interference corrupts most or all data samples, necessitating a halt in
data collection until the interfering source is located and mitigated. Typically, trucks equipped with spectrum
analyzers and directional antennas scan the RQZ area by systematically traversing surrounding roads (see
Figure 1) to detect signals from the interfering source. This process is time-consuming (taking hours) over a large
area (Mirror Article, 2022), limiting the scanning range to about 100 m at any given time. Every minute of this
slow search, during which the radio observatory remains shut down is a lost opportunity for multi-million- dollar
scientific instruments. Thus, a solution is needed to extend the scanning range, allowing trucks to cover larger
areas more quickly and to pinpoint the interfering source efficiently (see Figure 1).

3. System Overview

TranQuiL is a long-range interference detection and localization system, that addresses the range limitations of
the observatory-owned spectrum scanning trucks. TranQuiL locates ISM interferers (e.g., WiFi access points,
Bluetooth, etc.), saving valuable time for the radio observatory; the time needed for the advancement of scientific
research. While applicable to any radio technology that broadcasts messages using beacons, TranQuiL primarily
focuses on WiFi and Bluetooth. TranQuiL. employs two mobile receivers and a dedicated wireless backhaul for
inter-truck communication and performs detection and localization of the interfering source. To achieve
this, TranQuiL leverages a well-established technique—Time Difference of Arrival (TDoA) (Gustafsson &
Gunnarsson, 2003), which refers to the difference in the time of flights of a signal from the interfering source
received by the two receiving trucks (see Figure 2c). Note that when the trucks perform their search using
TranQuiL or using current solutions, the radio observatory must remain shut down. Thus, wireless backhauls
between trucks do not affect the observatory data collection and are deactivated once the observatory resumes
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operations. Multiple TDoA measurements, obtained as the trucks move to different locations, provide the spatial
diversity necessary to trilaterate the location of the interfering source.

TDoA versus AoA: One may wonder why TranQuiL chose TDoA rather than Angle of Arrival (AoA) localization
(e.g., antenna arrays or directional antennas). While AoA is well-suited for indoor localization, it incurs sig-
nificant errors over long distances. A small AoA error of A® = (.05 radians at a range d = 1 km results in a large
localization error of Ad = A® % d = 50 m.

Assumptions: To ensure proper operation and compliance with RQZ regulations, TranQuiL is built upon several
key assumptions that must hold true. First, TranQuiL requires the establishment of a wireless backhaul between
the two mobile receivers to ensure accurate Time Difference of Arrival (TDoA) calculations. These backhauls
must operate on frequencies that do not interfere with the radio observatory operations, thereby preventing po-
tential disruptions. Additionally, these backhauls should be designed for rapid deployment and teardown,
minimizing any delays in the localization of interference. Second, TranQuiL is designed to address uninten-
tionally deployed interference; it is not equipped to handle intentionally adversarial interference scenarios. For
instance, TranQuiL. cannot mitigate cases in which an adversary has deliberately altered the beacon protocol
specifications or modified the wireless signal modulation properties. Third, although TranQuiL is primarily
designed for Non-Line-of-Sight (NLOS) scenarios, it assumes the presence of a Line-of-Sight (LOS) path in the
received signal. This LOS path is extracted using TranQuiL's multipath mitigation algorithm to calculate TDoA.
However, if the LOS path is obscured by noise, the accuracy of localization may be significantly reduced. Finally,
TranQuiL utilizes USRP N210 devices in conjunction with an HP dual-core laptop with 16 GB of memory and a 1
Gbps Ethernet card for real-time collection of IQ samples. It is assumed that, in practice, IQ samples will be
available to vehicle operators in real time, enabling them to execute TranQuiL's detection and localization al-
gorithms to mitigate environmental interference.

Paper Outline: The rest of this paper explores two key challenges: (a) Section 4 studies the problem of over-
coming the limited range of WiFi and Bluetooth—about 100 m. We specifically explore ways to leverage the
structure of beacon packets of WiFi and Bluetooth radio technologies to enhance the detection range of WiFi to
950 m and of Bluetooth to 450 m; (b) Section 5 talks about how TranQuiL can be extended to non-beacon based
technologies by exploiting the frequency domain properties of the signals (3) Section 6 explores a long-range
localization system that processes detected packets to estimate the location of their sources. In doing so, it
mitigates various challenges exacerbated at long range including signal multipath and synchronization. The paper
concludes with system implementation (Section 7), evaluation (Section 8), and discussion (Section 9).

4. Beacon-Based Packet Detection

We present TranQuiL's enhanced packet detection technique that to improve range of typical localization
systems.

4.1. Current Packet Detection Algorithms

Consider Figure 3 which represents the packet format of both WiFi and Bluetooth packets. At a high level, every
packet in both technologies consists of a PHY layer preamble and payload that contains higher layer header fields
and data bits. However, there are key differences in the structure of bits within both preamble and payload across
both technologies. The preamble of WiFi contains repetitive patterns that are exploited by Schmidl and Cox
algorithm (Schmidl & Cox, 1997). However, its performance degrades as the SNR decreases. Thus, there are
cross-correlation-based approaches (Huang et al., 2022; Wang et al., 2020) which make packet detection more
robust to noise. In Bluetooth, the preamble consists of alternating 1's and 0's, and existing approaches also use
cross-correlation to perform packet detection. Figure 4 (see blue and red) shows the performance of existing WiFi
packet detection algorithms. We observe that existing packet detection algorithms perform extremely poorly in
detecting packets for long-range scenarios with SNR values as low as —10 dB.

Shortcomings: Why do current packet detection algorithms for both Bluetooth and WiFi fail at low SNR? Two
reasons: First, both WiFi and Bluetooth were originally designed for indoor use typically operating at ranges of
only a few tens of meters. Second, existing detection algorithms are intentionally simple, relying on only a few
symbols to detect a packet. This is done aimed at minimizing computational complexity and power consumption
in order to conserve battery life.
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Figure 3. Packet Format of WiFi and Bluetooth beacons.

4.2. Exploiting Beacon Packets

We mentioned why existing detection algorithms fail in low SNR scenarios. This naturally leads to the question:
“How do we significantly increase the detection range to detect an interfering transmitter source?.” To understand
our approach, we reflect on a key distinction between the state-of-the-art indoor WiFi/Bluetooth localization
systems and our own.

Locating Access Points versus Clients: Much of the existing work focuses on the localization of WiFi/Bluetooth
clients using uplink packets (Vasisht et al., 2016; Xiong & Jamieson, 2013; Zhao et al., 2018). In contrast,
TranQuiL targets interferers in RQZs, where both the uplink and downlink packets are of interest. In fact,
downlink packets with higher transmit power cause greater interference and thus facilitate easier localization of
APs. Locating and turning off APs automatically mitigates interference from any/all client devices. Therefore,
unlike conventional localization studies, TranQuiL prioritizes the identification and shutdown of APs.

Exploring Beacon packets for Localization: Instead of analyzing every packet, TranQuiL focuses on beacon
packets periodically sent by APs to advertise their existence, as these packets are remarkably easier to detect
owing to their low modulation rate and well-defined structure. To understand why, consider Figure 3. In both
technologies, the “Payload” section can be decomposed into multiple fields that remain consistent over time with
fields such as Frame Control, Duration ID, Destination MAC Address, Beacon Interval, etc. in WiFi and fields
such as PDU Type, MAC addresses, Access Address, etc. in Bluetooth. This enables us to enlarge the preamble
size for cross-correlation, thereby improving the detection range of the beacon packets. This can be observed in
Figure 4 where we compare the detection rate of our extended preamble (see green) with state-of-the-art WiFi
detection approaches (see red and blue). We observe an SNR gain of nearly 30 dB in packet detection in

100 T T .~ ]
VTN
—Schmidl and Cox
——Cross Correlation with STF+LTF
80 ——Cross Correlation with new preamble|
= —Beacon Periodicity
<
7]
k]
2 60
[3]
©
o
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o
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Figure 4. Comparison of packet detection performance of our approach as compared to the state-of-the-art packet detection
algorithms in simulation.
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simulation. To simplify exposition, we will henceforth primarily present techniques in relation to WiFi beacons.
But, these techniques can be easily generalized to Bluetooth beacons as well.

Exploring beacon periodicity: However, a longer dynamic preamble is insufficient to perform detection at
TranQuiL's target range. Therefore, we also exploit the beacon periodicity to enhance our detection range by
looking for patterns of the beacon's new preamble repeated over time and add them together coherently. The
major challenge here is that even though an interfering WiFi AP sends a beacon packet every 102.4 ms, the
samples received are not exactly periodic to high precision due to clocking imperfections on WiFi APs leading to
a chicken-or-egg problem that is, to perform detection, we require detection of the following beacons with high
precision. A naive solution would be to perform an optimization over the exact periods between consecutive
packets and choose periods that maximize the detection metric. However, this approach suffers from exponential
complexity, as each additional beacon packet introduces a new dimension to the search space, significantly
increasing the computational burden for coherent summation.

To tackle this chicken-or-egg problem, we build on a well-known technique in signal processing to detect
similarities between two temporal sequences—Dynamic Time Warping (DTW) (Muller, 2007). DTW is
particularly effective at handling time warping and offsets, and is known for its robustness to noise. It also outputs
the indices from two temporal sequences that are matched to one another. But, one might ask—“How does DTW,
which requires two time-series as input, help us to resolve this dilemma?.” We observe that because the received
signal is nearly periodic, the period-sized chunks of this signal should be very similar to each other, assuming
beacon packets are present in the signal. However, due to imperfect periodicity, there are some offsets between
two chunks. This is where we use DTW to detect similarities between chunks and matched indices. DTW works
well even for cases where beacon patterns are buried under noise, thus effectively mitigating the uncertainty
introduced by timing perturbations between two consecutive beacon packets. Then, these matched chunks can be
added coherently to increase the SNR of the beacon packet ensuring detection.

Mathematically, given the size n of signal, we first perform correlation with the long preamble. Then, we divide
the result into multiple chunks equally, each with the length of a beacon period (p) (102.4 ms for WiFi beacons),
leaving us with n/p chunks—a few of these chunks with beacon packets buried under noise and the rest of them
with only noise. All the chunks with beacon packets should be very similar to each other and should have low
DTW distance. Thus, to extract such chunks, we perform pairwise DTW among all chunks and sort them based on
the DTW distance. This also outputs corresponding time sequences which are matched to one another. We then
coherently add these sequences, until we observe the correlation peak exceed a certain threshold. Alg. 10 details
the exact algorithm to exploit beacon periodicity to detect packet start sample. We observe that, in general,
coherently adding 15—20 chunks results in detection, after which there are diminishing returns.

Algorithm 1. Beacon Periodicity Detection

Input: Correlated received signal—C(t) with length n, peak threshold thresh and
the beacon period p, Ceipay (E) =0
Output: t_ ..,

Divide C(t) into n/p equal chunks—C;(t), i=1..n/p

fori=1ton/pdo
for j=i+1ton/pdo
dtwMatrix (i, j) =DTW (IC;(t) |, [C5(E) 1)
(Igortedr Jsorteq) = Sort (Dist (dtwMatrix)) /* where Dist (dtwMatrix) captures

a o w N

pairwise time sequences' similarities */

6 for 1, J 10 lgortedsr Jsorted do

7 Crina1 (t) =Csipa; (t) +Match (dtwMatrix (i, j)) /* whereMatch (dtwMatrix (i, 7))
matches the ith and jth sequence */
if findP eaks (C¢ipay (t) > thresh) then
tetare = argMax £indP eaks (Ceipay (£))
10 break
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Complexity: It is worth noting that the above algorithm does not explode exponentially in sharp contrast to the
narve optimization problem. For the following analysis, we assume that DTW has a linear runtime (e.g., FastDTW
(Salvador & Chan, 2007)). Given the length n of the received signal and n/p chunks, the overall complexity for the

n2 n2 n2 n2 n2
O(p—z)*O@”O(p—zl"g(a))*‘)(a) : 0(&) M

Which is polynomial in time complexity. Note that increasing the period p can further decrease the time
complexity.

algorithm would be:

Effect of Frequency Offsets on WiFi beacons: To detect the start of the beacon packet, we mentioned that we
simply added the matched DTW waveforms together to improve the correlation peak. However, due to the carrier
frequency offset (CFO), the phase of beacon packets drifts over time, resulting in incoherent addition. Assuming
that the CFO remains constant across all beacons, we mitigate this problem by iterating over a fixed set of possible
CFOs and constructing a 2D correlation metric—one axis representing the sample index of a chunk and the other
representing the set of CFO values. The maximum over this joint 2D metric provides us with the start sample of
the beacon packets. Our assumption of CFO being constant across beacon packets holds fairly well since our
packet detection algorithm only needs about 15-20 chunks to perform detection, which is about 2 s for WiFi
beacons during which the CFO does not change more than +30 Hz (Chen et al., 2019). Note that iterating over a
set of CFOs only slightly increases the complexity of the algorithm and is much less than the exponential
complexity of the naive approach. Figure 4 shows the improvement we observe (see the magenta curve) by
exploiting the WiFi beacon periodicity.

Effect of Frequency Offsets on Bluetooth beacons: Can the above approach be applied to eliminate CFO effects on
Bluetooth beacons? Unfortunately, due to Bluetooth's frequency-hopping nature, each beacon experiences a
random initial phase offset caused by phase-locked loop (PLL) locking, resulting in incoherent addition even after
CFO correction. Thus, rather than performing detection individually at every receiver, we perform detection at
relative signal measurements across two receivers (which are GPS synchronized). This relative channel, devoid of
any frequency and phase offsets, completely eliminates the CFO correction step. The low bandwidth of Bluetooth
ensures that packets across disparate GPS-synced receivers are received at the same/adjacent sample. This
synchronization is not feasible for WiFi due to its wide bandwidth, however, WiFi transmissions are coherent and
are transmitted at a single frequency.

What if the beacon period is not known? Thus far, we make a key assumption—the interfering source is accidently
deployed and thus the beacon period of the transmitter source is well-known. This assumption is supported by the
fact that about 60% of users of consumer-grade WiFi do not perform simple tasks such as updating firmware and
changing passwords (Avast Threat Landscape Report, 2019). Hence, it is unlikely that most users would have the
required expertise to change the beacon period.

But, how does TranQuiL tackle the remaining users or an adversary who deliberately changes the beacon period?
To handle such cases, TranQuiL performs a window-based periodicity estimation before doing the actual
detection. Using only the signal power, this algorithm gets a coarse estimate of the beacon period by leveraging
the fact that noise power converges to a constant value as the sample size increases. In contrast, when a transmitter
signal is embedded in the noise, the overall signal power exhibits non-converging behavior, revealing patterns
corresponding to the signal's periodicity. TranQuiL exploits these patterns to estimate the period of the beacon
signal.

Mathematically, TranQuiL iterates over multiple window sizes, calculates the average signal power in each
window and observes its variation across all such windows. In cases when there is no signal present, the average
signal power remains almost constant across all such windows and its deviation from the constant value decreases
with increasing window size. This effect is captured in the standard deviation of average signal powers across all
windows of a particular size, and is continuously decreasing. However, when there is a signal present, even when
buried under noise, this standard deviation becomes convex and creates minima at the multiples of the period of
the signal. This effect can be observed in the simulation study whose results are shown in Figure 5. The figure
shows how with decrease in SNR, the standard deviation curve varies from a minima at the correct period value
(~50,000 samples) to become less convex at low SNRs, reaching its limit at —20 dB. At low SNRs, the period
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Figure 5. Simulation of our coarse period estimation algorithm across multiple SNRs from 10 to —20 dB.

estimation becomes too coarse and can lead to uncertain estimates. In such scenarios, the only option is to iterate
over all the possible period configurations available to estimate the correct period value, albeit at a high
computational cost.

Generalizing TranQuiL to other beacon-based technologies: TranQuiL primarily focuses on 2.4 GHz ISM band
interferers such as WiFi and Bluetooth APs. However, the techniques mentioned in this chapter are generalizable
to any technology that supports beacon transmissions. Table 1 shows examples of such technologies on unli-
censed frequency bands that can support the operation of TranQuiL.

5. Generalizing TranQuiL to Non-Beacon Based Technologies

TranQuiL had made another assumption in its operation—beacon support. But there are many technologies that
do not have support for beacons. For example, DVB-T lacks any beacon mechanism. Apart from this, even WiFi,
LTE, 5G data packets do not satisfy the beacon requirements of packets being periodic.

So how does TranQuiL deal with interference from such technologies? Thus far, the detection range improve-
ments achieved by TranQuiL have been due to the presence of key beacon characteristics — specifically, pre-
dictable field structures and periodic transmissions. In simple words, this translates to the temporal averaging of
received signals to improve the overall SNR ratio. However, we have another degree of freedom that can help us
achieve SNR gains—frequency domain information. Given we exploit frequency domain patterns of the trans-
mitted signal at the receiver, we may be able to achieve better detected SNR at the receiver, thus resulting in
enhanced detection performance.

Typically, these frequency domain patterns of a wireless signal are governed by the modulation scheme used by
the transmitter. TranQuiL focuses on OFDM—one of the most common modulation schemes used by a variety of
state-of-the-art wireless protocols due to its high spectrum efficiency and throughput. These include WiFi, LTE,
5G, Digital Video Broadcast—Terrestrial (DVB-T) transmissions. DVB-T protocols do not support any beacon
packets in their transmissions, thus interference based on these protocols can't be detected based on the techniques
we have mentioned until now. In this section, we explore how we can exploit frequency domain patterns of
OFDM modulation to improve detection performance compared to the conventional cross-correlation approach.

5.1. Frequency Domain Properties of OFDM Signals

We explore two key properties that are very specific and unique to the fre-

Beacon Periods of Different Technologies quency domain representation of OFDM signals. We discuss them below:-

Technologies

Frequency

Period

WiFi
Bluetooth
LoRa-Class B
RFID

24,5 GHz
2.4 GHz
902-928 MHz
902-928 MHz

100.24 ms
20 ms
128 s

6 ms

1. Frequency selectivity and orthogonality of wideband OF DM channel:- For
a wide bandwidth channel (tens of MHz of bandwidth), the channel
response across frequencies changes significantly in power since the
coherence bandwidth of wireless channels does not exceed a few MHz
(Kristem et al., 2018). Thus, if we can detect this change across the channel
response estimated from the received signal, we can infer that there was
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some transmission. Conversely, if there is no change across the estimated channel response, we can infer that
there is no transmission since noise power remains constant across a wide bandwidth under AWGN noise
assumption. However, detecting this change in channel response is fairly difficult if the signal power is
completely buried under noise. Thus, rather than estimating individual channel responses from each symbol,
we observe the variation in Energy Spectral Density (ESD)—the channel response power across frequencies,
averaged over all the symbols. Furthermore, this variation in average power can only be observed in OFDM
signals, since the total symbol energy in each data subcarrier averaged over all OFDM symbols is constant.
Mathematically, given that there is a signal present in the received signal:-

Y (k.f) = H(f) X(k.f) + N(k.f) 2

where f= —N/2 4+ 1, N/2 and k = OFDM symbol number. The received signal power at kth OFDM symbol is
given by

Y (kPP = (H(f) X(k.f) + Nk, ) (H' () X* (k. f) + N* (k. f)) 3)
= |H(PP XK + INKP + H) X(k.f) N*(k.f) + H* (f) X* (k. f) N(k.f) 4)

If we average this over K OFDM symbols where K is large, we can assume E (N (k, f)) ~ 0. Thus, the Energy
Spectral Density (ESD) can be written as:-

E (IY (kNF) = [HPP E(IXKHI?) + E(INKHI) (5)

Assuming AWGN noise with noise power 6> and constant average signal power P, at each subcarrier, the above
expression can be written as:-

E(IY (kNHIP) = H(PP P+ 0 (6)

If we plot E;, (1Y (k, f )|2) across f, we should see some variation owing to the range of f'being more than coherence
bandwidth. For the case, where no signal is present, the same expression can be written as which is constant.

E(IY (kN)) = & (7

2. Cyclostationarity: OFDM signals have been shown to satisfy cyclostationarity properties (Heath & Gianna-
kis, 1999). Cyclostationarity refers to a signal having statistical properties that vary cyclically with time. In an
OFDM signal, few subcarriers only transmit fixed known symbols called pilot symbols. These pilot symbols
are used to perform channel estimation to compensate for variations in channel response due to the Doppler
shift with time. Furthermore, these pilot symbols are spread out uniformly across all subcarriers that is, pe-
riodic in the frequency domain. Figure 6 represents a simulation of how cyclostationarity property can be
extracted from a WiFi 802.11b OFDM signal with no noise present. In this figure, we calculate the cyclic
correlation (Lund'en et al., 2009) of an OFDM signal and we obtain peaks at the subcarrier numbers corre-
sponding to the pilot subcarriers. The cyclic frequency axis represents the actual period and its multiples of the
pilot subcarriers.

TranQuiL exploits both of these frequency domain properties to achieve improvement in the detection perfor-
mance of wireless technologies that do not support beacon packets. However, each of these approaches has in-
dividual weaknesses. While the first approach can detect the presence of an OFDM transmission under low SNR,
it can not provide the start sample of the packet, due to the received signal being averaged over a large number of
samples. In contrast, the cyclic correlation approach can provide the start sample of the packet, but it fails to work
reliably when the received signal is heavily dominated by a large number of noise samples. Thus, TranQuiL takes
a hierarchical approach. First, it performs a coarse detection of OFDM packet by dividing the received signal into
multiple windows and adopting the first approach to detect if a packet is present in a given window. Second, if a
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Figure 6. Cyclostationarity property observed through cyclic correlation.

packet is detected in a window, cyclic correlation is performed on the received signal within that window to detect
the start sample of the packet.

6. Long Range Localization

In this section, we discuss how we calculate the Time Difference of Arrival (TDoA) across two receivers and then
use multiple TDoA values across spatially diverse locations to find the interfering transmitter.

6.1. Base Station Synchronization

At long ranges, both our receivers must be synchronized in time and frequency to accurately measure TDoA.
Hence, we use GPS clocks at both receivers to synchronize them in frequency and time with the clocks of GPS
satellites. Thus, all the samples collected by both receivers have the same reference (¢ = 0) point in time and we
obtain sample-level accurate I/Q measurements.

6.2. Mitigating Multipath

Consider two moving trucks and an interfering transmitter at a location of about a kilometer away. To perform
accurate localization, TranQuiL needs the transmitter's Line of Sight (LOS) paths to both receivers, whose length
difference corresponds to TDoA. However, achieving this is challenging because of dense multipath at such large
ranges.

TDoA versus ToF? One may ask—Why do we not use Time of Flight (ToF) using a single receiver and move
around to perform localization? To calculate the ToF, the time-of-departure of the signal at the AP needs to be
known. However, since the transmitter is non-cooperative and doesn't provide this information, we use TDoA,
which eliminates this requirement.

Why is multipath at long range challenging? At such long ranges, mitigating multipath is very difficult due to
more opportunities for signal reflections, which lead to large variations in candidate TDoA values across all paths
—ranging from a few meters to hundreds of meters. Almost all of the state-of-the-art WiFi localization systems
(Gong & Liu, 2018; Kotaru et al., 2015; Xiong et al., 2015) leverage a sparsity assumption on multipath to extract
the LOS path. However, this assumption breaks down at large ranges, where multipath is so dense and state-of-
the-art techniques fail when directly applied on the received signals. To address this challenge, TranQuiL adopts a
hierarchical approach:- First, eliminate multipath arising from fleeting reflectors and induce sparsity in multipath,
containing only the effects of dominant reflectors. Then, we exploit the terrain information to extract the LOS path
from sparse multipath.
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Figure 7. Multipath Mitigation: (a) Sparsify Multipath: We plot TDoA variation across time. Consistent TDoAs are assumed as dominant and sparse multipath (b) Angle
of Arrival () estimation (c¢) Maximum Likelihood Metric using Terrain information.

Rendering multipath sparse: To make multipath sparse, we make a key observation—Due to the movement of
trucks, there is inherent temporal diversity in the packets received at different times. For all these packets, the LOS
path along with paths from large reflectors such as mountains, buildings, trees etc. should remain almost
consistent with time, with the variations bounded by the speed of the truck (e.g., 25 mph X 100 ms ~ 1.2 m).
However, other multipath peaks from fleeting reflectors are inconsistent and sporadically appear and disappear.
We exploit this observation by plotting all the candidate TDoA values (see Figure 7a) with time and then per-
forming multiple least square fits with the constraint that the slopes do not exceed the speed of the vehicle. TDoA
values lying on this curve represent the TDoAs including the LOS path and reflections from large reflectors. Note
that exploiting the consistency of LOS paths to mitigate multipath has been explored in the literature (Xiong &
Jamieson, 2013; Wang & Katabi, 2013) for AoA-based systems. In contrast, TranQuiL develops its own con-
sistency metric for TDoA by fitting a curve with a slope bounded by the speed of the vehicle, thus tying this metric
to the physical constraints of the vehicle.

Exploiting terrain information: After obtaining multiple TDoA values, a natural question arises— ‘How does
TranQuiL differentiate between the LOS path and the dominant multipath reflections that remain consistent with
time?” To answer this, we first need to look at a key property of the TDoA curves we obtained. Consider Figure 7b
where truck Rx1 is moving with a speed of v and Rx2 is static with T as the distance between the source Tx and
Rx1. As the truck moves, the distance between Rx1 and Tx after the time dt is 7 — dt. Assuming the original angle
of the Tx with respect” v is 6 (the Angle of Arrival), we can write:

(r—do)* = 7 + (v.dt)* — 2.v.dt.7. cos (0) (8)

We then simplify the above (assuming dt and dt are small): cos(d) = 1 dt/v dt—where dt/dt is the slope of the
TDoA curves. Thus, for every source TX, either virtual or actual, we have an AoA estimate of the received paths.
This is repeated with the second truck to get second receiver's AoA estimate.

We now create a maximum likelihood metric across 360° based on the terrain information at each individual
receiver location. Consider Figure 7c, where we have a truck moving on a road surrounded by multiple blockages.
We design a simple probability metric based on two key factors—the blockage probability of a reflector and the
aperture angle of the reflector in the FoV of the receiver. Now, given the (AoA,, AoA,) pair for all the dominant
paths across 2 receivers, we assign a likelihood to each of the dominant paths and take the TDoA of the (AoA,,
Ao0A,) pair which has the highest likelihood as the LOS path.

TDoA for Bluetooth transmitters: Most of the concepts above apply to the TDoA calculation of Bluetooth as well
with the primary difference being in their bandwidth. While WiFi uses wideband OFDM, Bluetooth employs
narrowband GFSK modulation leading to a low resolution of TDoA. Fortunately, Bluetooth employs frequency
hopping, and channels across frequencies can be stitched together to improve resolution. TranQuiL exploits this
to emulate a wideband channel and improve the TDoA resolution.

6.3. Localization

Final Localization: After computing the TDoA values across multiple receiver pairs, localization is performed by
tracing locus of constant TDoA, with the two receivers serving as the foci of a hyperbola. The intersection of
multiple such hyperbolas provides us with the location of the transmitter. (see Figure 8a). We note that these
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Figure 8. (a) Final Localization of the transmitter by the intersection of multiple hyperbolas at the Green Bank observatory
testbed (b) Our testbed in the Green bank radio astronomy observatory (c) Our Manufacturing facility testbed in a major city
(terrain removed for anonymity reasons).

techniques have been extensively studied in the literature (Ho et al., 2007). Modeling these hyperbolas require
GPS estimates of the truck locations, and errors in these estimates influence our measurements. Various filtering
strategies (e.g., Kalman filtering (Ullah et al., 2019)) can further reduce this error—although we present system
accuracy without such filtering in our results to provide the readers a better sense of TranQuiL's raw error.

Impact of Dilution of Precision: The location of the base stations is an important factor that influences localization
accuracy because of Geometric Dilution of Precision (GDOP) (Langley, 1999). A poor relative location of trucks
(e.g., trucks very close to each other) can lead to hyperbolas whose intersection leads to a large error in the
transmitters' location estimate. Thus, these trucks need to ensure proper GDOP with respect to the transmitter.
Hence, we adopt the following truck movement route: As soon as a single truck detects the WiFi packet, one truck
stops while the other truck moves around to ensure a large range of GDOP values.

7. Implementation and Evaluation

We implement TranQuiL on two Ettus USRP N210s emulating on-vehicle spectrum analyzers. Each USRP is
kept in a car and moved around the testbed area to collect measurements. We use BG7TBL GPS Disciplined
Oscillator (GPSDO) clocks to synchronize our 2 receivers in time and frequency using GPS signals. We also
equip our receivers with omnidirectional WiFi 2.4 GHz antennas. We use an ASUS AC2900 WiFi router as the
WiFi interferer and Nordic Semiconductor's nRF5340 Development Kit as the Bluetooth interferer to the nearby
quiet zone. The collected data is processed to perform localization in MATLAB on the cloud.

Green Bank Observatory Testbed: Our first testbed (Figure 8b), is an actual Radio Quiet Zone (RQZ) in the Green
Bank Observatory in West Virginia. As shown in Figure 8b, we moved our interferer (ASUS AC2900 WiFi
router) to 15 different transmitter locations marked by green. For every transmitter location, we deploy 2 receivers
on moving cars around a 2 km? area and the data is collected at all the possible pairs created by the 5 locations
marked by red.

Careful Compliance at an RQZ: To prevent interference with the scientific data collected at the radio telescope
from the deployed transmitter in our evaluation, we took relevant permissions from RQZ administrators and
coordinated with them while evaluating. We performed our experiments during its annual maintenance window
(3 weeks) when the observatory is shut down. We also set up a custom communication infrastructure to coordinate
all of our experiments at Green Bank (since cellular is unavailable) that was taken down post the 3-week window.

Manufacturing Testbed: Our second testbed (Figure 8c) is in a manufacturing facility in a major US city. We
deployed our receivers in a 1.33 km? area and the data is collected for all possible pairs with 4 different receiver
locations marked by magenta for each of 15 different transmitter locations.

Ground Truth and Baseline: For ground truth, we use an off-the-shelf U-blox EVK- 7P GPS receiver (<1 m
precision in an open sky setup). We note that the error in the GPS location estimates of the moving receivers
affects our measurements. We also place an Ettus USRP N210 within the 100 m the interferer as a ground truth
spectrum analyzer, which can detect the interferer packets using standard packet detection. To evaluate our
systems' localization performance, we use two baselines:- state-of-the-art WiFi localization system SpotFi
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Figure 9. Green Bank Observatory testbed: (a) CDF of the TDoA Error of TranQuiL versus SpotFi and RSSI baseline
(b) CDF of the Localization Error of TranQuiL versus SpotFi and RSSI baseline (c) Variation of TDoA with Range of
TranQuilL.

(Kotaru et al., 2015) and a localization system purely based on RSSI. Both the baseline systems need prior in-
formation about the start of the packet to perform localization which we provide using the techniques mentioned
in Section 4.

8. Experimental Results
8.1. Time Difference of Arrival Accuracy

Method: We evaluate our system with 30 different WiFi interferer locations in both testbeds. Note that because of
our wide area testbeds, all the locations are in non-line of sight (NLOS). Therefore, we implement our multipath
mitigation algorithm to extract the line of sight (LOS) path from both the receivers and estimate the TDoA.

Results(a): Green Bank Testbed Figure 9a depicts a 17.75 m median error and 99th percentile error of 48 m in
estimating the TDoA of interfering WiFi source. We significantly outperform both SpotFi and RSSI baselines
with median errors of 58 and 402.6 m respectively. It is worth noting that the CDF tail is significantly longer for
SpotFi due to its poor multipath resolution capability in the presence of dense multipath at long ranges.

Results(b): Manufacturing Facility Testbed Figure 10a depicts a 9.16 m median error and 99th percentile error
of 46.7 m in estimating the TDoA of interfering WiFi source. The median error is better than at Green Bank due to
the relatively wider area of the Green Bank testbed. We significantly outperform the 2 baseline systems—SpotFi
and RSSI, which provide median accuracies of 53.2 and 376.9 m respectively.

8.2. Localization Accuracy

Method: We evaluate TranQuiL across the two testbeds, with the WiFi interferers located at over 30 locations in
both the testbeds. After estimating the TDoA across multiple receiver pairs, we perform localization of the
interfering WiFi source.
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Figure 10. Manufacturing Facility testbed: (a) CDF of the Time Difference of Arrival Error of TranQuiL versus SpotFi and
RSSI baseline (b) CDF of the Localization Error of TranQuiL versus SpotFi and RSSI baseline (c¢) Variation of Time
Difference of Arrival Error with Range of TranQuilL.
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Results(a): Green Bank Testbed Figure 9b depicts 17.38 m median error for TranQuiL in localization of the
interfering WiFi source across 5 receiver locations with 99th percentile error of 52.5 m. We note that TranQuiLL
significantly outperforms the localization error of both baseline systems which had a median error of 47 m (about
3X%) and 348.2 m (about 20X) respectively under identical settings.

Results(b): Manufacturing Facility Testbed Figure 10b depicts a 9.11 m median error and a 99th percentile error
of 41.9 m for TranQuiL in the localization accuracy. Consistent with our previous observations, the localization
accuracy of our manufacturing testbed is better than the Green Bank testbed because of the relatively wider area
testbed at Green Bank with dense natural obstructions. However, we still significantly outperform both the
baseline localization systems with a median error of 40.60 m (about 4X) and 205.92 m (about 22X) respectively.
Note that the reported accuracy for both testbeds suffices to locate the building or a house where the interfering
WiFi source lies, and thus is sufficient for enforcing radio quietness in the RQZ.

8.3. TDoA Error Variation With Range

Method: We calculate TDoA from all the receiver pairs at 30 different interferer locations in both testbeds. We
calculate the range of all pairs by taking the minimum distance of both receivers with the transmitter. Also, we
have removed the TDoA outliers with very high errors (>80th percentile) to understand the trend with range more
clearly since most outliers have their LOS paths completely buried under noise.

Results(a): Green Bank Testbed The general trend in the TDoA error is increasing with the range (see Figure 9c).
It varies from 13.3 m TDoA error at 400 m range to 40.07 m TDoA error at 850 m. This is due to the low SNR of
signal received at larger distances, worsening our detection algorithm (Sec. 4), thus leading to errors in TDoA
calculation. We observe that around the 600 m range, the TDoA error is lower than in other ranges. We attribute
this to the high SNR of the signal obtained at that distance which may have happened due to constructive fading.

Results(b): Manufacturing Facility Testbed Similar to the Green Bank testbed, the TDoA error (see Figure 10c)
is increasing with range because of decrease in SNR. It varies from 5.4 m TDoA error at 600 m range to a 13 m
TDoA error at 730 m. As above, there are certain irregularities in the TDoA error at 620 m range and at 680 m
range because of SNR variations obtained resulting in destructive and constructive fading respectively. In contrast
with Green Bank experiment, the TDoA error is lower at the manufacturing testbed even at longer ranges because
of the difference in terrain and major obstructions.

8.4. Detected Packet SNR Versus Range

Method: We calculate the received signal SNR at all receivers by taking the ratio of the peaks obtained after
performing detection using 20 chunks and the noise power level. Therefore, we only detect packet if the
detection peak is above noise (~0 dB SNR). We obtain the SNR across all the receivers in both testbeds and plot
its variation with the range.

Results: In Figures 11a, 11c and 11b, the SNR of both WiFi and Bluetooth signals decreases with range. For WiFi,
it varies from 7.8 dB median SNR at 380 m to 2.46 dB median SNR at 930 m across both testbeds with no packet
detected at distances >950 m. For Bluetooth, it varies from 13.7 dB median SNR at 170 m to 0.12 dB median SNR
at 450 m. For WiFi transmitters in indoor environments, the median SNR varies from 3.8 dB at 50 m to 0.1 dB
median SNR at 750 m. Thus, we conclude that 950 and 750 m are the maximum ranges of our system for WiFi
outdoors and indoors respectively. For Bluetooth, the maximum range is 450 m.

8.5. Coarse Period Detection Versus Range

Method: To evaluate the coarse period detection algorithm explained in Section 4.2, we observe the error in
detecting the correct beacon period across all signals. We plot the percent error (wrt the beacon period) across all
ranges—that is, the distance of the receiver from the transmitter.

Results: In Figure 11d, the error in detecting the beacon period value increases from <5% to >10% after the 775 m
range. With more than 10% uncertainty, iterating over the DTW-based detection algorithm across all candidate
period values becomes computationally expensive. Thus, even without knowing the beacon period value,
TranQuiL operates up to 775 m range—at the expense of some computation and reduction in the maximum 950 m
range.
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Figure 11. Microbenchmarks: (a) Variation of SNR (in dB) of the received WiFi signals in outdoor and (b) indoor
environments and (c) Bluetooth signals respectively after coherent combining beacons across the distance from Tx to Rx
(d) % Error in detecting the Period across the distance from Tx to Rx.

8.6. Percent of Detected Packets Versus SNR—Non-Beacon Based TechnoloGies

Method: To evaluate the effectiveness of frequency domain characteristics in performing the detection of non-
beacon-based OFDM technologies, we perform a simulation study to plot the percentage of detected WiFi
packets with cross correlation as baseline and frequency domain characteristics along with cross-correlation.

Results: Figure 13 represents our simulation results. We observe that we obtain about/sim8 dB of improvement in
detection performance by adding the frequency domain characteristics of OFDM signals into the detection
pipeline. The improvement is not as good as using beacon periodicity, due to the limited number of subcarriers (64
to be exact for a 20 MHz WiFi 802.11b signal)—thus limiting the frequency domain gains we can achieve.

8.7. Localization Error Versus No. of Receivers

Method: We evaluate the localization performance with the total number of receiver pairs used to calculate TDoA.
We vary the number of receiver pairs from 2 to 5 to compute TDoA values and use them to perform localization.

Results: In Figure 12c, the localization error decreases with the increase in base station pairs. This is due to the
increasing spatial diversity, thus enhancing our localization performance. Adding another pair only has a limited
incremental effect at high spatial diversity, which can be observed in Figure 12¢, where error doesn't improve
after 3 pairs.

8.8. Detection Latency With Range

Method: To evaluate the latency gains from TranQuiL's enhanced detection, we perform a simulation study using
the actual road network around Green Bank (see Figure 12a). First, we choose 15 transmitter locations at random
in an 8 km X 5 km area around the observatory. For each transmitter, we sample 20 different routes which a truck
can take to perform detection, ensuring that the truck starts moving from the observatory. We measure detection
times for each route and get an average detection time at a transmitter location. We perform this for 2 cases:- (a) A
moving truck with a 100 m range and (b) with a 1 km range.

Results: Figure 12b shows the variation of detection time with the transmitter distance from the observatory. The
detection time significantly improves using TranQuiL's detection range of 1 km with 6 X latency improvement at
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Figure 12. (a) Truck routes around the Radio Observatory to perform detection (b) Detection time using conventional methods with 100 m range (in blue) and
TranQuiL's approach with 1 km range (in red) (c) Variation of Localization Error with the no. of base station pairs (d) Variation of TDoA Error with GDOP (No data

points between 2.7 and 3.8).
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time for every transmitter location is almost the same. We observe similar
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201
10t 8.9. Geometric Dilution of Precision
b= = o 50 P 5 5 Method: As discussed in Section 6, the Geometric Dilution of Precision
SNR (in dB) (GDOP) plays a very important role in the accuracy of the localization. In our
scenario, we calculate GDOP across all the pairs of receivers and plot it
Figure 13. Comparison of packet detection performance of frequency against their respective TDoA Errors. Note that the lower the GDOP value is,
domain properties of OFDM signals as compared to simple cross-correlation the better the accuracy.

in simulation.

Results: Figure 12d represents the TDoA error variations with respect to

GDOP. As expected, the TDoA error increases with the increase in GDOP.
Unfortunately, for all the receiver locations we collected data from, we do not have any data samples with GDOP
values between 2.7 and 3.8 due to topographic constraints. Thus, we observe a hole with no data points in this
region.

9. Discussion and Limitations

Extending to technologies other than WiFi and Bluetooth: TranQuiL is designed to primarily tackle technologies
whose signals demonstrate some form of repetition or redundancy in time—for instance, beacons repeated
periodically. We can observe this property in various other technologies as well apart from WiFi and Bluetooth.
We mention such technologies in Table 1 along with the beacon periods they support. The concepts and tech-
niques used in TranQuiL to detect WiFi and Bluetooth interferers can be extended to these technologies, provided
that the preamble is known up front as well as its periodicity. Along with beacon-based technologies, we also
generalize TranQuiL to non-beacon based technologies as well, as shown in Section 5 by exploiting frequency
domain patterns. Such frequency domain patterns are common in technologies that primarily use OFDM signals.

In short, TranQuiL generalizes to technologies that either have: (a) periodic beacons; or (b) frequency domain
cyclostationarity (e.g., in OFDM). Put together, this allows TranQuiL to generalize in detecting and localizing a
wide variety of wireless technologies that act as interferers in an RQZ.

However, it should be noted that the incorporation of known information on the interference signal enhances the
range of detection. For example,— if a known RFI repeats itself consistently every few hours, TranQuiL can be
extended to use this periodicity as the beacon period for its detection. The greater the amount of prior knowledge
available about a signal, the greater the detection performance and range. Although not used in TranQuiL, we also
envision support from the radio observatory in providing some of the prior information to the trucks going out in
the environment, owing to their highly sensitive radios that are capable of detecting very low-powered signals.

We believe there is rich potential for future work that investigates ways to build databases of patterns that exist in
RFI. For example, one can train machine-learning based approaches where using a large data set of classified RFI.
Once trained, this model can be used to extract the time-domain and frequency domain patterns, that can be used
by TranQuiL to perform detection and localization. This approach could potentially extend to RF interference
whose general structure is less reliably known up front, such as from microwave ovens, wireless controllers, etc.

Multiple Interfering WiFi transmitters: We assume that there is only a single interfering source present in the
environment. How would TranQuiL handle multiple interfering sources? TranQuiL can exploit the beacon
periodicity information to differentiate multiple transmitters. It is very unlikely that two interfering sources start
transmitting at the same time. Thus, the respective beacons transmitted would be separated by a certain offset in
every chunk and can be differentiated easily.
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Extreme Multipath/Occlusion: While TranQuiL does try to mitigate the effect of multipath, there can be cases
where the LOS path is severely attenuated and cannot be measured due to deep occlusions. In such cases, our
multipath mitigation algorithm would fail and would lead to large errors.

Transmitter Mobility: We have assumed that the interferer transmitter is static while the trucks are trying to
localize it. This assumption may not hold true in cases such as WiFi hotspots, Bluetooth devices in moving cars,
etc. However, even with moving transmitters, LOS and high reflection paths still remain consistent across time
and TranQuiL's consistency metric can readily extract them.

Cost of deploying TranQuiL: It may seem that deploying two moving trucks to localize an interfering source is
quite expensive. However, TranQuiL was designed to exploit the already existing resources at radio observatories
with no extra cost. Typically, these observatories already have 2-3 trucks available (with mounted receivers) to
detect interferers. Thus, we incur no extra cost to the observatory. We note that an alternative variant of TranQuiL.
may replace trucks with drone swarms carrying lightweight SDRs or arrays of narrowband radios, however, may
be relatively limited in flight range, sensing range and/or payload weight/complexity.

Improvements in Range and Accuracy: The range of TranQuiL across various technologies is limited by the prior
information we have while performing detection. In case of WiFi and Bluetooth, even though the period of
Bluetooth beacons is shorter than WiFi beacons, the preamble size of Bluetooth is much smaller than WiFi,
leading to small processing gain in the detection performance, thus leading to smaller detection range. To improve
the range of Bluetooth interference detection, TranQuiL needs the presence of additional time domain or fre-
quency domain patterns. The accuracy obtained by TranQuiL's localization is primarily dependent on mitigating
multipath experienced by the interfering signal. To improve accuracy, we need more dimensions in which we can
resolve multipath. To this effect, having more antennas on a single truck or having more trucks deployed
concurrently to perform detection can improve the localization accuracy.

Uplink transmissions from Client to AP: One may wonder, how uplink transmissions from the clients to Access
Points affect TranQuiL. The presence of client transmissions do not affect TranQuiL's performance due to the
non-periodicity of client transmissions. Uplink client transmissions are generally governed by Carrier Sense
protocols (CSMA) and are much weaker than beacon transmissions. For our manufacturing facility testbed, we
had ambient WiFi traffic and TranQuiL still performed fairly well.

10. Summary

This chapter presents TranQuiL, a long-range interference detection and localization system for Radio Quiet
Zones, which detects and locates WiFi packets at about a kilometer range and Bluetooth packets at about 450 m
range. We develop an enhanced packet detection pipeline that leverages periodicity of beacons. Then, we perform
localization by exploiting path consistency to mitigate the effects of multipath. We deploy TranQuiL on two
testbeds—one at an actual RQZ (Green Bank observatory) spanning two sq. km. area and another at a
manufacturing facility spanning 1.3 sq. km. area in a major city in the US. We observe an overall median error of
13.2 m across both testbeds. We believe that extending this system to detect and localize other non-beacon-based
technologies remains a problem to be addressed in future work.
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