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ABSTRACT 

Robust, wide-area sensing of human environments has been 
a long-standing research goal. We present Sozu, a new low-
cost sensing system that can detect a wide range of events 
wirelessly, through walls and without line of sight, at whole-
building scale. To achieve this in a battery-free manner, Sozu 
tags convert energy from activities that they sense into RF 
broadcasts, acting like miniature self-powered radio stations. 
We describe the results from a series of iterative studies, cul-
minating in a deployment study with 30 instrumented ob-
jects. Results show that Sozu is very accurate, with true pos-
itive event detection exceeding 99%, with almost no false 
positives. Beyond event detection, we show that Sozu can be 
extended to detect richer signals, such as the state, intensity, 
count, and rate of events. 

Author Keywords

Activity sensing; Battery-free; Wireless sensing; Context-
Aware Computing; Internet-of-Things. 

CSS Concepts

Human-centered computing → Ubiquitous and mobile com-
puting → Ubiquitous and mobile computing systems and 
tools. 

INTRODUCTION 

Building-scale sensing of human activities has been a long-
standing research goal. Of course, human environments are 
incredibly diverse, with potentially hundreds of facets that 
would be valuable to feed into intelligent systems that could 
enhance everyday tasks. Such systems may wish to monitor 
fixed infrastructure (e.g., doors, cabinet drawers, faucets, toi-
lets), movable objects (e.g., kitchen utensils, personal hy-
giene items, tools) and larger appliances (e.g., microwave, 
refrigerator, stove, laundry machine, coffee maker). 

Unfortunately, contemporary sensing approaches are ill-
suited to the scale, diversity, and construction of homes and 
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offices. For example, to achieve the ubiquity required for 
wide-area sensing, many systems use small, wireless, bat-
tery-powered “tags” (e.g., [12, 42, 51, 55, 56]). In general, 
sensing fidelity is limited due to tight power constraints, and 
even still, the batteries require periodic maintenance, which 
is undesirable for deployments with scores of sensors. Alter-
natively, sensors can utilize wall power, though this limits 
placement or requires wires to be run. Either way, both bat-
tery-powered and wired sensors typically cost between $10 
and $100 each (e.g., [12, 55, 56, 58]), meaning a comprehen-
sive, whole-building deployment might cost thousands of 
dollars. In response to these limitations, we define four prop-
erties an ideal sensing solution should embody: 

Low Cost: The cost per sensor should be under $10, meaning 
a building could be outfitted with 100 sensors for under 
$1000. This price point would also permit integration with 
low-cost items, such as a plastic watering can. 

Battery- and Maintenance-Free: The sensors should not re-
quire wall power or batteries, allowing for flexible placement 
and minimal (or no) maintenance. 

Building Scale: The system should operate wirelessly, 
through walls and floors, and without line of sight. 

Rich Sensing: Finally, beyond detecting the presence of ac-
tivities, the system should also offer rich sensing opportuni-
ties, such as the state, intensity, count, and rate of activities. 

SOZU 

This paper presents Sozu, a building-scale sensing solution 
that achieves the above idealized constraints. A Sozu deploy-
ment consists of one antenna, which can be placed in an in-
conspicuous location, such as a basement. Users then attach 
Sozu “tags” to items and infrastructure of interest. To keep 
cost low, these tags are constructed from ultra-low-cost ana-
log components, and thus cost only a few dollars each (i.e., 
no digital components, nor digital communication like Wi-Fi 
or Bluetooth). 

Another key innovation is the battery-less design of Sozu 
tags, which instead harvest energy directly from the activities 
they sense. The tags convert and then broadcast this energy 
as radio frequency (RF) waves, acting like small radio sta-
tions. Each tag is given a unique frequency, allowing for 
recognition of many simultaneous events. Importantly, we 
selected a frequency range that readily penetrates common 
building construction types, offering whole-building sensing 



            
      

      

       
           

  
   

         
    

    
     
     

      
    

   
    

  

        
     

 
  

    
    

 

          
      

        
    

       

  

        
      

  
      

    
    

    
  

      
     

  

  

    
   
        

        
     

     
     

        
      

      
     

  
      

       
   

  

       
     

       
      

    
     
       

     
     
      

    
   
       
    

  

         
    

    
    

     
     

     
     

      
     

        
        

    
    

   

     
       

     
     

       
     

  

    
      

      
       

       
  

           
     

 

           
      

        
    

   
    

with just a single antenna. As we will discuss in detail, our 
tag design and software stack enable fine-grained sensing ca-
pable of supporting a wide range of end-user applications. 

In addition to describing the implementation of our system, 
we also report the findings from several studies. First is a 
comprehensive survey of energy harvesting opportunities in 
common environments (Figures 1-7), which we used to in-
form the design of our tags. In our second study, we added 
Sozu tags to 30 objects across three, multi-story buildings 
and evaluated the recognition accuracy of our system over 
two weeks. Results show activity detection accuracies in ex-
cess of 99%. Simultaneously, we ran a separate one-month 
durability test of our tags, with no failures. Finally, we took 
all of our developments in hardware and software and cre-
ated an easy-to-use Sozu Toolkit. We gave this toolkit to 
eight students, who created their own applications, which we 
summarize later in the paper. 

In sum, Sozu describes a new approach for sensing human 
environments, at a cost and sensing range that enables com-
prehensive, whole-building deployments. By being self-
powered, they should require near-zero maintenance, and 
can be placed on essentially any object that emits energy that 
we can harvest. 

RELATED WORK 

Activity sensing has been long sought after in the research 
domain and has seen some success in commercial products. 
All activity sensing systems require power, either from bat-
teries, powerlines, backscatter, or energy harvested from the 
environment. We now review these different approaches. 

Object-Borne Sensors

The most straightforward approach is to attach sensors di-
rectly to objects of interest, including users themselves. For 
example, Google’s activity recognition API [28] leverages 
inertial sensor data captured by mobile devices. Researchers 
have created wearable sensors that collect a wide range of 
signals from a user’s body for activity sensing [35, 37, 43, 
46]. Thanks to advances in electronics and microprocessors, 
researchers have envisioned a future with ubiquitous sensor 
tags attached to objects [8, 60]. Today, many companies of-
fer battery-powered sensor tags with wireless connectivity 
[12, 42, 51, 55, 56]. 

Wide-Area Sensing

Although per-object sensors can be very accurate, they have 
obvious scale limitations and maintenance implications. In 
addition, power constraints often limit their sensing fidelity 
(e.g., sampling rate, duty cycle). Thus, there has been con-
siderable research looking into approaches where a single 
plugged-in sensor can monitor a large area, making deploy-
ments more practical and cost-effective. 

Perhaps the largest body of work in this space falls under In-
frastructure Mediated Sensing. Prior work has leveraged 
powerline [17, 31, 44], HVAC [45], gas lines [16], and 
plumbing [25, 26] to monitor activities in a building. Other 
efforts in wide-area sensing have focused on detached sen-
sors, using cameras [36], laser vibrometry [62], ultrasound 

[52], EMI antennas [61], and multi-sensor-fusion boards [38] 
to achieve robust, wide-area sensing. 

Backscatter Sensing

Backscatter technology offers the promise of using wireless 
signals (e.g., Wi-Fi) for power, compute, and/or sensing [13, 
49, 54]. It is also possible to have ultra-low-cost passive tags, 
such as RFIDs. Researchers have used backscatter tech-
niques to investigate activity sensing [11, 14, 39, 47, 53], de-
tecting object grasp [27], 3D printing wirelessly-connected 
objects [34], localization [41] and even sound capture [9, 10, 
48]. Unfortunately, backscatter techniques generally suffer 
from limited sensing range (<15m), precluding building-
scale coverage unless multiple readers are deployed. There 
are battery-assisted RFIDs that achieve longer ranges, but 
these require periodic maintenance. Sensing concurrent ob-
jects and activities, as well as rich signal streams (beyond 
mere presence) are also challenging. 

Self-Powered Sensing

Most related to Sozu are approaches that are self-powered – 
sensors that capture energy from the environment (e.g., so-
lar) or human activities (e.g., tool use). Self-powered sensing 
has seen some commercial success, for example, battery-free 
switches [23]. Small solar cells are also popular for recharg-
ing small batteries, which can then periodically power mi-
crocontrollers with sensors and wireless connectivity [52]. In 
the research literature, PowerBlade [18] sits on and siphons 
energy from electrical plugs to monitor energy consumption 
of electrical appliances; WATTR [15] used variations in pipe 
water pressure for both sensing and energy harvesting, very 
much in the spirit of Sozu. Researchers have also harvested 
energy from powerlines [30], ambient temperature changes 
[63] and vibrations using the piezoelectric [50] and triboe-
lectric [32, 40, 59] effect. 

Although these sensors do not require maintenance (meeting 
one of our ideal criteria), they all rely on digital components 
(microcontrollers and wireless modules), which increases 
cost. Additionally, these prior systems are specialized, focus-
ing on particular categories of events, whereas Sozu aims to 
be a flexible and universal sensing system. 

DEVELOPMENT OVERVIEW 

Sozu tags are essentially energy converters, turning energetic 
physical activities into wireless RF broadcasts. The system 
name – Sozu – comes from the traditional Japanese water 
feature, where a bamboo segment slowly fills with water, 
eventually causing its center of mass to shift, such that it piv-
ots downwards, striking a rock (designed to scare away ani-
mals in gardens). This is similar in principle to our system, 
where one form of energy is converted into another for prac-
tical use. 

The types of energy sources that Sozu can utilize dictates not 
only its RF emission strength, but also what facets it can 
sense in the environment. Therefore, our first step was to sur-
vey the environment for activities, classifying them into en-
ergy categories, and then investigating the effectiveness of 
harvesting implementations. Our next step was to determine 



     
    
          

     
     

   

         
       

   
       

     
 

 

      
       

         
       

        
    

     
  

 

       

       
 

 

       
    

    
        

   
      
    

     

 

     

      

 

 

     
     

     
    

     

     
    

 

      

         

  

 

    
    

      
        

     
    

   

 

     

    
 
 

 

  

    
       

    
     

       
        

   

       

         

 

   

     
   

   

 

        

       

 

how to best utilize this energy for radio broadcasts, taking 
into account our goals of long-range transmission without 
line of sight. We must also contend with, e.g., government 
regulations and background noise. This initial work informed 
our system implementation, which we describe in detail later. 

INVESTIGATION ONE: ENERGY HARVESTING 

We identified seven energy categories from which Sozu tags 
could be powered. For each category, we describe example 
activities, along with proof-of-concept implementations and 
estimated cost. Later in this section, we discuss energy har-
vesting in practice using measurements we collected from 50 
unique everyday objects/activities. 

Motion 

Motion is generated by a wide range of activities, including 
opening a drawer, popping a pill bottle, and pruning plants. 
To convert these motions into electrical energy, we used 
magnets to induce current in a wire coil (example integra-
tions shown in Figure 1). We found two commercial harvest-
ers that worked well for our purposes: a self-powered bicycle 
light [2] ($2.70) and the ECO 200 energy bow made by 
EnOcean [22] ($6.95). 

Figure 1. Four Sozu-augmented objects that use motion 

energy: pill bottle, garden pruner, mailbox, and slipper. 

Vibration 

Appliances such as food blenders and power tools generate 
vibrations that can be covered to electrical energy with pie-
zoelectric materials. For this, we used a 50 mm piezo buzzer 
element [19] ($1.36) weighted with a small nut. This har-
vester can be attached to movable objects with double-sided 
tape (Figure 2, left and middle). For stationary appliances, 
such as a grinding wheel, we can place the harvester under-
neath one of the feet (Figure 2, right). 

Figure 2. Sozu-augmented objects that convert energy from 

vibration: sander, blender, and grinding wheel. 

Light

Light is another common form of energy, which can be used 
to infer events and activities. For example, illumination in-
creases when room lights are turned on and refrigerator doors 
are opened (activating the internal light; Figure 3, left). Con-
versely, a car parking above a sensor or curtains being drawn 

decreases light level. To convert light energy, we use solar 
cells (58×55 mm Panasonic [20], $7.80). 

Figure 3. Sozu can also be powered by light energy: refrigera-

tor door light, overhead work lights, and sunlight in a garden 

and parking lot. 

Thermal 

Many devices generate heat when operating, for example, 
gas-powered tools, hot glue guns, stoves and fireplaces. Sozu 
converts this thermal energy with Peltier junctions [5] (~$2). 
We attach one side of a Peltier junction to an object of inter-
est with thermal glue and tape, and on the other side, we use 
an aluminum heat sink to improve efficiency. Figure 4 shows 
four example instrumented objects. 

Figure 4. Sozu can be powered by hot surfaces, such as those 

found on stoves, hot glue guns, fireplaces, and gas tools. 

Electromagnetic Radiation

Electrical appliances often emit electromagnetic (EM) radia-
tion when in use, due to e.g., motors and switched-mode 
power supplies. We harvest this energy using a 60 mm diam-
eter, 1500-turn coil with a ceramic core (~$5). These harvest-
ers can be stuck (often magnetically) to devices, ideally close 
to motor coils and power regulation circuits (Figure 5). 

Figure 5. Sozu can be powered by EM radiation from objects 

such as a microwave, drill press, ice maker, and leaf blower. 

Gas Flow 

HVAC and machine exhaust generate flows of air and other 
gases, which can be easily harvested with DC brushless fans 
[21] ($3.30), as seen in Figure 6. 

Figure 6. Sozu can be powered by gas flow from a kitchen 

hood, exhaust fan, ShopVac, and HVAC vent. 



  

        
      
       

     
     

     

 

       

         

 

    

       
     

   
    

       
    

    

         
       

      
       

      
        

      
       

      
      

      
  

  

           
     

        

    

         
         

           
      

    
     

      
  

       
     
       

      
     

  

   

          
  

        
   

    
         

       
    

     
        

         
     

      
       

 

   

    
    

        
      

        
    

        

 

        

Water Flow 

Finally, water flow is a high energy source, which Sozu can 
leverage to detect the use of faucets, showers, garden hoses, 
and even liquid containing vessels, such as watering cans 
(Figure 7). We selected two water-generators: one that fits 
US faucets [3] ($3.5) and another that can be added inline to 
half-inch NPT water lines [4] ($4). 

Figure 7. Sozu can be powered by the flow of water from a 

sink faucet, garden hose, watering can, and showerhead. 

Energy Harvesting in Practice

To better understand the energy budget for our Sozu imple-
mentation, we surveyed 50 objects (Table 1) to test energy 
harvesting in practice. For each test object, using harvesters 
described in the previous section, we recorded harvester out-
put using an oscilloscope with a 10 kOhm load (close to the 
input impedance of our final Sozu tag design), which allowed 
us to estimate power output. 

On average, our test objects yielded 2.7 mW of power (Table 
1). We found our motion harvesters produced impulses, 
whereas other harvester types produced continuous output, 
either a constant signal (e.g., solar, thermal) or a periodic sig-
nal (e.g., vibration, EM radiation, gas and water flow). Over-
all, water flow produced the most power, followed by solar. 
Harvested power from the other energy categories was more 
variable, and more of a function of the object or activity. Fi-
nally, we found the Peltier junctions generated low voltages 
(<400mV), and thus we augmented these harvesters with a 
LTC3108 [7] boost converter ($6) to bring the output voltage 
up to a more usable 5V. 

INVESTIGATION TWO: RF BROADCAST 

With our power budget known, our next task was to identify 
an ideal frequency range for Sozu tag RF broadcasts. This 
was an iterative process, which we now describe. 

Antenna Design & Broadcast Frequency

According to antenna theory, the optimal size of an antenna 
is proportional to the wavelength of the radio wave. A 1 Mhz 
RF signal has a wavelength of 300 meters, much too long for 
practical use, even with e.g., a quarter-wave monopole an-
tenna. For this reason, we use frequencies above 30 MHz 
(i.e., 2.5 m quarter-wave monopole antenna), approaching 
the physical size of commonplace objects (e.g., perimeters of 
appliances). 

The wavelength of an RF signal also impacts its ability to 
penetrate obstacles, such as walls, floors and furniture. High-
frequency signals (shorter wavelength) have more energy re-
flected by obstacles, which limits transmission range and 
also introduces multipath effects [1]. Therefore, we decided 
to only consider broadcast frequencies below 200 MHz. 

Table 1. Mean energy generated by 50 activities we tested. 

Environmental Noise 

To identify “quiet” parts of the RF spectrum in the range we 
identified previously, we used a USRP and ran a wide spec-
trum collection test from 1-200 MHz (62.5 kHz steps) using 
a wideband omnidirectional antenna. We collected data at six 
locations (two commercial buildings, two apartments, and 
two detached single-family homes, all in a large US city) for 
8 hours each. Figure 8 illustrates the power spectrum, which 
we computed by comparing the received power at each fre-
quency with the noise floor (min within the current frame of 
powers). The range from ~90-100 MHz is densely occupied 
by FM radio stations, while ~30-35 MHz is used by mobile 
communication equipment. This left three relatively quiet 
bands: 15-30, 35-85, and 105-160 MHz. We dropped 15-30 
MHz, as it did not provide much bandwidth for many tags, 
leaving us with two candidate ranges. 

FCC Compliance

Sozu must also comply with FCC regulations, which permits 
low-power RF transmission in unlicensed frequencies [24]. 
There are, however, there are many restricted frequencies 
that must be avoided. This eliminated the promising 105-160 
MHz range from consideration, as it was mostly restricted. 
Thus, we ultimately selected the 35-85 MHz range for Sozu. 
In this frequency range, transmitters are limited to a field 



          
   

       
       

            
      

   

     
    

         
      

        
      
     

      
    

        
     

        
        

        
       

   

   

       
      
       
      

      
       

  

  

        
    

      

          
   

       
   

      
      
          

      
        

  
    

       
         
      
       

        
         

    
        

       

    
     

     
       

    
      

         
     

         
         

        
     

       
     

         
    

      

      
  

        

	  

         
           

      
      

 
        

        

    

 

      

 

    

Figure 8. RF power density from 1 to 200MHz. 

strength of 100 μV/m at 3m, which is equivalent to 3 mW 
transmitter power assuming isotropic radiation. This means, 
with an ideal passive antenna design (Power Gain = 1, im-
pedance = 50 Ohm), the peak voltage (Vpeak) of a sinusoidal 
RF signal has to be lower than 0.54 V. We strictly followed 
this in the Sozu RF circuit design to meet FCC guidelines. 

Building Penetration

From theory and literature, we knew our selected frequency 
range should have good building penetration. Nonetheless, 
we wished to measure this directly with our own equipment 
and across typical construction styles. We tested five walls: 
brick (30 cm thick), drywall + metal studs (15 cm), glass 
(2 cm), stone/masonry (65 cm), and precast concrete 
(20 cm). To capture data, we transmitted a swept-frequency 
signal from 35-85 MHz on one side of the wall, and meas-
ured the signal strength on the other side (symmetric 5 m 
separation between transmitter and receiver). We did not find 
significant differences in attenuation across frequencies, and 
so we average these results. Across all wall construction 
types, we found a mean attenuation of -12.04 dB (SD=7.83). 
The concrete wall had the most attenuation (-20 dB), whereas 
glass and drywall + metal studs had little effect (-4.10 and -
3.30 dB respectively). 

SOZU IMPLEMENTATION 

A Sozu deployment consists of two main components: Sozu 
tags and an antenna receiver with attached computer. Sozu 
tags are distributed in the environment, transforming energy 
from activities into radio broadcasts. The antenna receiver is 
deployed at one central location (e.g., basement of a house), 
which monitors tag broadcasts. We now describe these com-
ponents in detail. 

Sozu Tags

Sozu uses a custom tag (Figures 9 and 10) which connects to 
an energy harvester (see Investigation One) and an antenna 
(discussed subsequently). The board itself is responsible for 

Figure 9. Sozu tag circuit schematic. 

managing energy and generating an RF signal with a power 
consumption of 2.05 mW. 

Energy Management: As discussed previously, most of our 
energy harvesters provided periodic signal, which we rectify 
with an ultra-low-forward-voltage rectifier. As the incoming 
power may not be enough energy to run our circuit, we de-
signed an energy storage and latch mechanism to store small 
amounts of energy, which can later be released. We use two 
capacitors (C1 and C2) in series to store rectified energy (Fig-
ure 9); the voltage at the junction between the two capacitors 
controls the gate of a silicon-controlled rectifier (SCR). A 
trigger voltage of 1.5 V activates the SCR, which then passes 
the stored energy to the RF oscillation circuit. The SCR turns 
off once the RF oscillation consumes all energy, and then the 
tag begins to store energy again for the next activation. Re-
leasing the stored power results in an RF chirp lasting 
roughly half a second (e.g., Figure 13 right). We note that 
some activities provide sufficient continuous energy (e.g., 
water faucet, HVAC vent) that the SCR is always on, result-
ing in a continuous RF output (e.g., Figure 14 right). 

Different transmission strengths and broadcast chirp dura-
tions are achievable by tuning the capacitance of C1 and C2. 
The ratio between C1 and C2 sets the initial voltage that pow-
ers the RF front end when the SCR is on. A smaller C1:C2 

produces a higher initial voltage, which yields stronger sig-
nal strength and extended transmission range. However, we 
note that C1:C2 must be higher than 0.39 so that the FCC re-
quirement is not exceeded. 

To increase the duration of RF broadcasts, larger capacitors 
can be used. For our later evaluation, we used a C2 of 100 μF 
and a shorted C1. This was because all of our activities gen-
erated sufficient power, which did not need further energy 
storage. With this configuration, the minimum energy to gen-
erate one RF broadcast is 0.12 mJ, which is roughly the 
amount of energy needed to charge C2 up to 1.5 V (i.e., the 
trigger voltage). This configuration also had the effect of lim-
iting transmission power to below the FCC regulation. 

RF Oscillation: To generate RF broadcasts, Sozu tags use an 
oscillation circuit based on a single-transistor LC oscillator. 
The output frequency can be calculated by: 

1� = 2�√�� 

where L is the inductance of a coated copper coil which 
measures 420 nH. C is the capacitance that is dominated by 
a user-adjustable capacitor (range of 8-50pF), which permits 
a tag to be set to a specified frequency. One version of our 

Figure 10. Two Sozu tag designs, one with broadcast 

frequency tuned with a trimmer capacitor (left) and 

one with a dip-switch (right). 



      
        

       
    
        

     
         

       
     

 

 

   
       
     

       
       

    
 

  

          
      

    
       

        
      

      
    

       

     
        
    

        
     
      

     
     

       
   

    

     
     

      
     

      
         

       
        

        
  

       
       

        
      

   

          
        

       
      

          
          

      

   

      
    

    
       

        
      

      
       

       
       

 

   

        
    

     
     

    
     

     
           
      

    
   
      

       
     

         
   

  

        
   

 

   

        
   

     

tag used a simple trimmer capacitor (adjustable with a screw-
driver, Figure 10, left), while our second design used a 4-bit 
dip switch to connect/disconnect four capacitors (1, 2, 4, and 
8 pF) in series with a 30 pF capacitor, treating frequency 
more like a binary ID (Figure 10, right). 

We note that the transistor Miller capacitance (CMiller) be-
tween base and common also contributes to C, through being 
in series of C4 and C3, and parallel to the trimmer capacitor. 
Considering the Miller capacitance, the C component of the 
oscillation circuit is calculated by: 

1� = + �2.+33-. 1 + 1 + 1 
�*+,,-. �0 �1 

This Miller capacitance is affected by the supply voltage, re-
sulting in very basic frequency modulation (FM). We ob-
served a variance of Miller capacitance (CMiller) of around 
1 pF with a supply voltage from 1.5 to 5 V, resulting in a 
frequency shift of ~0.5 MHz. This effect allows us to demod-
ulate analog signals on the receiver end, enabling richer sens-
ing opportunities, which we discuss later. 

Transmit Antenna 

We investigated a wide variety of antennas for our Sozu tags, 
including chip antennas and PCB antennas. Ultimately, we 
selected simple monopole antennas, which can be easily in-
tegrated into many objects. We varied our antenna lengths 
(from 5 to 100 cm) for different objects, depending on their 
output power. In general, objects that produce less energy re-
quire longer antennas to help maintain broadcast range. We 
used generic 18-gauge braided wire for our antennas, which 
was easily trimmed to a desired length. 

Our wire antennas can often be hidden by making clever use 
of an object’s geometry (e.g., running down a mailbox post), 
or simply be tucked behind larger objects and infrastructure. 
For smaller and mobile objects, where long antennas are 
more problematic, we found two alternatives. First, for ob-
jects with metallic enclosures (e.g., kitchen appliances), we 
can use the shell itself as an antenna. Second, the human 
body can be co-opted as a large antenna; for this, we connect 
our RF output to a copper patch where the user would grasp 
an object (example shown in Figure 14). 

Bandwidth & Concurrent Signals

In order to support detection of many concurrent activities, 
Sozu requires each tag to operate at a unique frequency. The 
frequency stability (i.e., bandwidth) of Sozu tags therefore 
decides the maximum number of concurrent activities that 
the system can sense simultaneously. To quantify this, we 
measured the frequency shift of a Sozu tag while varying the 
supply voltage from -5 to +5 V. We observe an average band-
width of 0.52 MHz (SD=0.12). This suggests that Sozu could 
support up to ~96 tags (i.e., (35-85 MHz) / 0.52 MHz band-
width). In practice, we found that moisture and temperature 
can affect the capacitance of our LC oscillator circuit, which 
further shifts the registered frequency. To account for this, 
we suggest using a 1 MHz bandwidth, especially for outdoor 
objects and activities (e.g., mailbox, parking spot). 

Environmental Hardening

Outdoor placements, such as a garden or parking lot, require 
resilience to moisture and temperature change. To survive 
these environments, we fully encased some of our tags in 
clear epoxy resin (examples in Figure 3). The only external 
element was our wire antenna. This solved tag failures from 
moisture and extreme temperatures, but it did not solve small 
shifts in our LC oscillator circuit from temperature changes. 

Sozu Receiver 

To capture RF signals emitted by Sozu tags, we used a 
HackRF One software defined radio (SDR) [29] connected 
to a wideband omnidirectional antenna [6]. We recommend 
this antenna be placed in a discrete, but central location, such 
as an attic, closet or basement (Figure 11). The SDR streams 
data to a laptop over USB, after which it is processed by 
GNU Radio [57], which computes FFTs (non-overlapping 
windows, 8192 samples). This yields a stream of ~2400 FFT 
results per second (i.e., FPS), which are streamed over a local 
socket to a custom Java program for further computation and 
interactive control. 

Activity Recognition

Detecting the presence of activities (i.e., on/off) can imme-
diately power a wide variety of smart building applications, 
including automatic lighting with occupancy detection, alerts 
for unattended stoves, and medication reminders with smart 
pill bottles. As noted previously, detecting the presence of 
activities is equivalent to detecting the presence of RF sig-
nals at registered frequencies. Specifically, for each regis-
tered frequency, we find the min and max FFT bin within a 
±0.5 MHz window and compute the difference. We found 
this range value compensates for varying antenna sensitivity 
across frequencies and interference from wide-band environ-
mental noise (e.g., fluorescent light). To increase stability, 
we smooth this value with an exponential moving average, 
and then use a basic threshold to decide if an activity is on or 
off. This decision is further stabilized with a majority voter 
(300 ms history). 

Open Source

To facilitate replication and deployment, we have open 
sourced our Sozu tag PCB design files and deployment soft-
ware: https://github.com/FIGLAB/Sozu 

ACCURACY EVALUATION 

We deployed Sozu tags at three locations – an apartment, a 
detached house, and a commercial building. These 

Figure 11. Sozu receiver setup deployed in a basement. 



     
   

   
     

    
       
     

      
    

    
       

   

 

            
       

           
     

     
     

     
    

     
       

   
          

       
         

      
       

        
       

   

 

      
    

      
       

  
    

 

       
       

        
       

     
 

   

         
      

     
       

   

          

      

 
         

       

 

      Figure 12. We deployed Sozu at three test locations. Objects in our accuracy evaluation are denoted by colored-coded circles. 

environments offered different objects, room functions, and 
construction types. At each location, we deployed our Sozu 
receiver in an inconspicuous location, and augmented ten 
commonplace objects with Sozu tags (Figure 12). 

Of the 30 activities we chose to evaluate, 22 have been iden-
tified as important in prior work [26, 31, 38, 62]. The eight 
“new” items are pruner, hedge trimmer, drawer, mailbox 
flag, pillbox, hot glue gun, garden sunlight, and window sun-
light. The aforementioned papers were unable to sense un-
powered handheld items (e.g., pruner) and distant unpowered 
objects (e.g., mailbox flag), and thus these items help to un-
derscore Sozu’s new capabilities. 

Procedure 

Our 30 tags were deployed for three weeks. At the end of 
each week of operation, the experimenter visited each loca-
tion to check the durability of the Sozu tags, as well as test 
detection accuracy. To start, all activities were turned off 
(sunlight powered tags were covered), after which the exper-
imenter collected ten instances of Sozu detections, spaced 
apart by one minute. Activities were then manually activated 
one at a time (random order), and a single instance was cap-
tured. The experimenter then turned the activity off (or 
waited for the activity to naturally end, e.g., toilet flush and 
refill) and repeated the collection process nine more times for 
that activity. Note that every “on” instance for a particular 
activity gave us nine “off” instances for all other activities. 
In sum, for each activity, we collected 30 “on” trials (10 

Figure 13. Strategic placement of magnets on a door frame 

allows the direction of a sliding door to be sensed. 

instances × 3 weekly collections) and 300 “off” trials (10 in-
stances × 3 weekly collection when all objects were “off”, 
plus 9 other “on” objects per location × 10 instances × 3 
weekly collections). In total, across all 30 activities we stud-
ied, we collected 9,900 on/off instances. 

Result 

All tags were functional at the end of the deployment (in-
cluding those placed outside. The overall accuracy of on/off 
activity detection was 99.94%, with an even split of false 
positives and false negatives. Though this high accuracy is 
encouraging, we caution that further long-term deployment 
studies (multiple months, more locations) are required. 

Latency

For all harvesting methods, other than thermal, the time be-
tween activity actuation and RF broadcast is under 500 ms. 
Our thermal harvesters required at least a 30 °C temperature 
differential before generating sufficient voltage, and the 
large thermal mass of our test objects simply required time 
to heat up. 

BEYOND ON/OFF DETECTION

While on/off activity detection is a powerful building block, 
smart building applications can also benefit from fine-
grained information, such as directionality and rate of activ-
ities. Sozu can offer such information with simple extensions 
of its detection process. 

Figure 14. By including the user in the LC oscillator circuit 

via a conductive grip (copper tape), Sozu can detect user 

grasp, which manifests as a characteristic frequency shift. 



  

      
      

   
      

     
         

         
        

 

  

       
     

       
       
       

        
          

     

  

         
     
       

      
      

      
     

      
       

          
        

     
      

       

  

       
    

        

        
      

 

        
     

          
        

     
         
       

       

    

      
      

       
           

    
       
     

     
    

      
      

          
    
     

         
         

      
        

 

        

        

     

        

      

       

       

     

Figure 15. Top: received Sozu tag frequency at different 

light intensities. Bottom: mean received frequency vs. light 

intensity with linear regression plotted. 

Directionality

Some objects have complex states with directional activities. 
Doors are a quintessential example, as a closed door has a 
very different function and meaning than an open one, and 
simply knowing “door moved” is not sufficient. As an exam-
ple implementation of direction sensing, we strategically 
mounted magnets on the rail of a sliding door (Figure 13). 
This asymmetry results in two sets of chirps (a pair and a 
single chirp), the order of which can be used to infer direc-
tion, and thus door state. 

Grasp Detection

Sozu can also detect when a user is grasping an object. We 
achieve this by connecting the user’s body to our LC oscilla-
tion circuit with a conductive patch, which characteristically 
lowers the broadcast frequency. As an example, we aug-
mented a hot glue gun (Figure 14), allowing Sozu to not only 
know if the glue gun is on, but also if the user is actively 
using it. With this data, we could e.g., alert a user if they have 
left a glue gun on without use for more than 15 minutes. 

Intensity

We can also leverage frequency modulation to encode analog 
signals. Specifically, we calculate the frequency difference 
between the current frequency (fcurr) and the registered fre-
quency (fbase) of a tag. This frequency shift correlates to the 
output voltage of the harvester, which can be associated with 
an analog dimension of the activity. As a demonstration, we 
placed a light meter (for ground truth) side-by-side with a 
Sozu tag powered by a solar cell (fbase = 48.6MHz). We used 
a dimmable light to vary the environmental illumination 
from 312 to 1279 Lux. We recorded both the measured light 
intensity and the received tag frequency. Figure 15 (top) 
plots some example signals, and further shows that it is fairly 
straightforward to correlate frequency shift with light inten-
sity (Figure 15, bottom; see also Video Figure). 

Rate 

Sozu can also detect the rate of activities, such as water flow 
volume and motor RPM. In these cases, the energy harvest-
ers provide periodic signals that correlate with the rate of the 

Figure 16. Top: received Sozu tag frequency at different 

wind speeds. Bottom: the linear correlation between Sozu-

detected frequency oscillation rate and actual wind speed. 

activity. This manifests as an oscillating frequency shift (see 
Figure 16, top), the rate of which can be measured by count-
ing zero crossings. 

As an example, we captured data from a gas-flow-powered 
Sozu tag at different wind speeds using a DC fan (placed next 
to an airflow meter for ground truth). The raw FM signal can 
be seen in Figure 16 (top), as well as the linear relationship 
between the detected frequency oscillation rate and actual 
wind speed (bottom). We performed a similar experiment for 
water flow; Figure 17 shows the linear correlation between 
the frequency oscillation rate and true water flow rate. 

TAG LOCALIZATION 

Knowing the location of activities would also be useful for 
smart buildings systems. For example, a shop manager may 
wish to track the location of power tools for safety reasons, 
while facilities staff may want to see what rooms have been 
vacuumed recently. Additionally, in multi-occupant environ-
ments (e.g., apartment buildings), a personal Sozu system 
should only decode a user’s activities and not neighbors’. 
This could be also achieved by using different tags (with dif-
ferent registered frequencies) in different rooms (e.g., each 
faucet is unique), but this approach does not scale or work 
for movable devices, such as power tools and vacuum clean-
ers. Instead, one could use tags registered to the same fre-
quency (e.g., all faucets use the same frequency), and their 
location serves as extra bits of information for disambigua-
tion. This approach would also expand the number of tags 
we could support in our 35 – 85 MHz frequency range. 

Since RF broadcasts attenuate while propagating through 
space, we used multiple antennas to triangulate broadcasts 

Figure 17. The linear correlation between Sozu-detected 

frequency oscillation rate and water flow rate. 



      
     
   

	 	  

       

     

         

       
       

     
       

         
         

       

 

     
         
  

       
    

    
        

       
        

        
       

    
   

    

   

        
       

      
     

      
      

      
          

  

   

     
      

       
      

   
       

 

  

       
       

     
       

       
     

        
  

      
        

       
   

          
      

  

        
       

        
        

 

         

        

 

       

 

          
         

             

Figure 18. Locations (circles) tested in our localization study, 

with mean Euclidian error (meters) provided inside circles. 

and thus localize tags. Specifically, we used four receiver an-
tennas and the Wentzel-Kramers-Brillouin (WKB) approxi-
mation [33] to model RF propagation: 

�5(�, �+) = �;(�) + �(�, �+) + �=�?�? 
? 

where �5(�, �+) denotes the received signal power at the i-th 

antenna for the tag q, �;(�) denotes the transmission power, 

�(�, �+) is the path loss power, and �∑? �?�? is the shadow-

ing term, which captures the impact of the attenuation be-
cause of the wall type (�?) and thickness (�?). These factors 

were calculated using data from our previous Building Pen-
etration study. We then corrected the signal power with a 
shadowing term, inferred the distances between the tag and 
the base stations using the path loss power, and used a least 
square error approach to compute the location. 

Procedure 

For testing, we deployed antennas at the four corners of a 
13×5 m office space (illustrated in Figure 18). We first cali-
brated antenna sensitivity by collecting data from a Sozu tag 
of a known power on a 1 m grid on the first and second 
floors, as well as outside of the building. 

After calibration, we used a gas-flow-powered Sozu tag 
powered by a small DC fan (simulating a vacuum cleaner) 
and collected data at 18 locations (8 points on the second 
floor, 6 points on the first floor and 4 points outside the build-
ing – see Figure 18). At each location, we collected 20 sec-
onds of data, yielding 14,400 data points in total. We then 
calculated the Euclidian distance error between the true lo-
cation and Sozu’s estimated location to quantify the perfor-
mance of our localization approach. 

Figure 19. Sozu tag used for parking occupancy detection. 

Results 

Sozu was able to localize tags with an average error of 4.1 m 
(SD=1.9). Figure 18 breaks this result out across the 18 loca-
tions we tested. Although coarse, it is sufficiently accurate 
for room-level localization. This means if there are several 
e.g., faucets in a house, they could use a common frequency 
and be disambiguated by location data. We also used our 
study data to simulate zone-level localization (i.e., first floor, 
second floor, and outside), and in this case, all points were 
correctly localized. 

SOZU TOOLKIT 

To lower the barrier of entry in applying Sozu to activity 
sensing applications, we created a toolkit that consists of a 
Sozu tag connected to a solar cell, an RTL-SDR, a set of an-
tennas, and demo code. We also wrote a quick start guide on 
how to set up the software, deploy Sozu tags, and receive 
signals. All materials can be found in the Sozu repository: 
https://github.com/FIGLAB/Sozu/tree/master/toolkit 

User Study

To evaluate our Sozu toolkit, we conducted a user study with 
8 students taking classes in Human-Computer Interaction at 
our institution (6 undergraduate and 2 graduate students). 
Among these students, four rated themselves as having little 
hardware development experience. Each student was given a 
Sozu toolkit and provided with any harvester they requested 
for their project. Students were responsible for generating an 
application concept, implementing their idea, and document-
ing their project with a video (see Auxiliary Materials). The 
students were given one week and were compensated $50 for 
their time. We recorded how long it took participants to set 
up the Sozu sensing pipeline, from receipt of the toolkit pack-
age to displaying signal on their laptop. We also kept track 
of bottlenecks, failures and successes with daily interviews. 

Results 

All participants successfully deployed Sozu tags and finished 
their projects within the one-week deadline. On average, it 
took 36 minutes (max 2 hours) to set up Sozu on their per-
sonal computers. We note that most of the time was spent on 

Figure 20. A Sozu-augmented pill bottle can detect when its 
Figure 21. A recycling bin that alerts facilities staff when full. lid is opened, or not opened, in which case an alert is sent. 



    
      

      
    

      
        

 

    

        
         

       
     

         
     

          
      

       
           

         
     

         
       

       

        
  

   
      

     
        
    

       
    

     
     

         
  

     
       

   

         
   

        
  

     
 

      
          

  

 

         
    

      
      

       
       

      
      

     
      

     
        

          
     

       
      

     
    

    

 

          
    

         
     

 

 

         
     

  
     

    
       

     
     

 
 

       
 

 

         

  

Figure 22. A door could automatically open when a 

wheelchair approaches. 

 

        Figure 23. A Sozu-augmented storage bin can alert a shop 

        

Python environment configuration. Participants found the 
solar cell we included in the toolkit package particularly 
helpful in getting started (i.e., “signal out of the box”, no sol-
dering needed). Participants also found our guide on how to 
harvest energy from different sources useful, though it was 
still the most challenging part of the project according to 
their feedback. 

Example Student Projects

We now briefly describe the student projects, which both il-
lustrate potential uses of Sozu and also the ease at which our 
approach can be deployed. See also Auxiliary Materials for 
student-made videos of their projects. 

Parking Occupancy: One student made a parking sensor with 
Sozu, which is powered by a solar cell. When the output fre-
quency dips (or turns off entirely), it is inferred that a car has 
parked at the spot above the sensor (Figure 19). 

Medication Reminder: Another student used Sozu to build a 
smart pill bottle that can detect if its lid is opened. If the lid 
is not opened when medication is scheduled to be taken, an 
alert can be sent to the user (Figure 20). 

Smart Recycling Bin: In this project, a student used Sozu to 
detect if a recycling bin was full, based on whether a solar-
powered tag near the top was blocked by refuse (Figure 21). 

Automatic Door for Wheelchairs: One student attached a 
motion-powered Sozu tag to a wheelchair and placed a re-
ceiver antenna by a doorway. The idea was to automatically 
open the door once a wheelchair’s presence was detected. 
The sensitivity and orientation of the receiver antenna was 
tuned such that wheelchairs were only detected when ~1 m 
away (Figure 22). 

Consumables Monitoring: One of our student participants in-
strumented a bin in the lab containing tapes with a motion-
powered Sozu tag. This allowed for automatic tracking of 
how often the bin was accessed. After a certain threshold, a 
reminder is sent to the shop manager to check on supplies 
(Figure 23). 

Foot Traffic: In this student project, a solar-powered Sozu 
tag was used in concert with a wall-powered laser pointer to 
count how many people passed through a doorway.  

Meeting Room Occupancy: This project had a student place 
a solar-powered Sozu tag at the corner of a projection screen 
to detect when the digital projector was turned on, inferring 
meeting room occupancy. 

manager to check on supplies after repeated access. 

Work Hour Monitoring: Lastly, a student made a chair occu-
pancy sensor using a solar-powered Sozu tag cut into the 
back of a chair. Light is blocked or attenuated when someone 
is seated, and the student used it to track how long they are 
seated for work. 

CONCLUSION 

Future smart homes and offices will rely on robust, wide-area 
activity sensing to power intelligent and context-sensitive 
end user applications. In pursuit of this vision, we developed 
Sozu, a low-cost, self-powered, building-scale activity sens-
ing approach. Instead of batteries, Sozu utilizes energy pro-
duced as a byproduct from many everyday activities. We op-
timized Sozu’s implementation by first investigating energy 
harvesting opportunities. We then conducted a series of RF 
investigations to explore how to best utilize harvested en-
ergy. Results from a multi-week evaluation across three mul-
tistory buildings and 30 activities suggest our approach of-
fers very high detection accuracy, with few false positives. 
We also discuss how Sozu can be used to sense rich signals, 
such as direction, user grasp and rate of events. Finally, we 
put together a toolkit and had eight students participate in a 
week-long study. All participants were able to get Sozu run-
ning on their personal computers and build simple, yet illus-
trative example applications of their choosing, underscoring 
the ease-of-use and flexibility of Sozu. 
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