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The ever-increasing demand for data has forced cellular networks

towards advanced multi-antenna (MIMO) techniques. However,

advanced MIMO solutions such as massive MIMO, coordinated

multi-point, distributed MIMO, and multi-user MIMO, all require

the base station to know the downlink channels to the client. In the

absence of this information, the base station cannot beamform its

signal to its users. Therefore, base stations require user devices to

perform the measurements and send the channels back to the bases-

tation as feedback. This feedback generates significant overhead

that scales linearly with the number of antennas, and is a bottle-

neck for next generation of cellular networks with large antenna

deployments.

Our work, R2-F2 (originally described in [10]), takes a differ-

ent approach. R2-F2 enables cellular base stations to estimate the

downlink channels without any user feedback at all. R2-F2 uses

channel measurements on the uplink, i.e. on signals transmitted

from the client and received at the base station, to infer downlink

channels. The key challenge in building R2-F2 is that a majority of

cellular networks (all major networks in United States) use different

frequencies for uplink transmissions from the client and downlink

transmissions from the basestation, i.e. they use Frequency-division

Duplexing (FDD). Therefore, to infer downlink channels from up-

link channels, R2-F2 must answer a fundamental question: How do
we infer the wireless channels on one frequency band by observing
those channels on a different band?
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Figure 1: R2-F2’s Approach: R2-F2 extracts the paths of the
signal fromchannels on frequency band-1 to reconstruct the
corresponding channels on frequency band-2.

To answer this fundamental question, R2-F2 builds a new bridge

between two different streams of wireless networking research:

communication and localization. R2-F2 infers wireless channels

across frequencies by leveraging a simple observation: while the

channels change with frequencies, the underlying physical paths

traversed by the signal stay the same. R2-F2 builds on past research

in RF-based localization [9, 12] to develop a transform that can

infer parameters (like distance, angle, etc.) of the physical paths

traversed by the signal from uplink channels measured at the base

station. Once it has characterized the physical paths, it can invert

the transform to convert these physical paths to wireless channels

on a different frequency on the downlink (see Fig. 1). Since R2-F2

can convert channels from one frequency band to another frequency

band, it enables cellular networks to benefit fromMIMO techniques

without incurring the channel feedback overhead.

1 IMPACT AND FOLLOW-UP
R2-F2 advances the state-of-the-art along two axes. First, it proposes

the use of computational techniques at the physical(PHY) layer, i.e.,

relying on channel estimates that are not physically measured but

computationally estimated. Second, it shows how wireless channels

measured at one frequency band can be translated into wireless

channels at a different frequency band. Both these contributions

have been built upon by researchers in the area, and have led to

new research directions. We discuss these directions below:

Pushing PHY Techniques to the Edge: The proliferation of low

power resource-constrained IoT devices has precipitated the trend

of minimizing resource usage on the end user devices and pushing

computations to the edge devices (like IoT base stations, Wi-Fi

access points, etc.). A subset of this trend has been to offload the

physical layer compute from the client to the edge. R2-F2 was an

early work in this direction as it eliminates the channel estimation

and channel feedback overhead of the client.

Ever since, multiple researchers have focused on building on

R2-F2 to develop more accurate computational methods for similar

problems in cellular networking research. One line of work has

focused on using super-resolution to better estimate the underlying

physical parameters fromwireless channels [11, 13]. Inspired by the

same intuition as R2-F2 some recent work [2, 7] has adopted deep

learning methods for accomplishing the task of converting uplink

channels to downlink channels without requiring any additional

information.

Beyond cellular networks, multiple researchers [3, 4] have built

on R2-F2 to demonstrate the benefits of channel prediction in unli-

censed spectrum like Wi-Fi or LPWANs. For instance, [4] builds a

channel prediction algorithm for low power sensor networks that

can increase battery life of sensors by 230%. It does so by predicting

wireless channels across frequency bands, and using this prediction

to pick a frequency that optimizes the communication between the

sensor and the base station. The channel computation and opti-

mization is done on the base station to offload any overheads on

the client device.
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mmWaveBeamAlignment: Recent years have seen proliferation
of research in the mmWave networking space. mmWave frequency

bands offers orders of magnitude higher bandwidth than Wi-Fi

or cellular networks, and hence are crucial for high throughput

applications like wireless virtual reality, or video streaming. Since

mmWave devices operate at much higher frequencies (28 GHz

or 60 GHz, as opposed to sub-6 GHz for Wi-Fi), they experience

significantly higher attenuation. To overcome this attenuation, they

must use narrow beams to communicate between the transmitter

and receiver. As a consequence, the transmitter and receiver must

align their beams before communication can begin. This beam

alignment process leads to latencies of tens of milliseconds, thereby

negating the advantage of mmWave networks for latency sensitive

applications, and mobile devices where the alignment needs to be

periodically performed.

An active area of research [1, 8] aims to perform this beam

alignment using wireless channel information on other frequency

bands (like Wi-Fi). The core idea is that the correct beam alignment

depends on the physical configuration of the underlying paths that

the signal can travel from the transmitter to the receiver. Similar

to R2-F2, the physical configuration of paths can be inferred using

wireless channels at much lower frequencies like Wi-Fi and cellular

without requiring directional beams and beam alignment. Once

these physical parameters of the underlying space are identified,

these parameters can be used to infer the possible beam alignments

at the higher frequencies used for mmWave transmissions.

Physical Layer Security:Wireless channels sit at the core of phys-

ical layer security methods. Past work has tried to use wireless chan-

nels as secure keys for information exchange under the assumption

that wireless channels cannot be inferred without explicitly measur-

ing them between two locations. The ability to infer these channels

without explicitly measuring them has opened up new possibilities

for security attacks and defences.

Since R2-F2 demonstrates the ability to measure wireless chan-

nels across frequencies, new security methods [6] use the inferred

channels as alternatives to key exchange in cellular networks. The

base station and client can now have a shared key (i.e. the down-

link channel) without requiring either of them to send this key to

each other. On the other hand, new attacks [14] have emerged that

exploit this ability to infer wireless channels to estimate wireless

channels between two devices by snooping on communication be-

tween them. When viewed in conjunction with newer and more

accurate computational techniques for inferring channels, this line

of research can lead to more potent attacks over time.

1.1 Impact Beyond Research
R2-F2 bridged wireless communication and localization to show

howwireless channels can be inferred across frequency bands by go-

ing through underlying physical representations. To illustrate such

cross-connections between different areas of wireless networking

research, the paper has become a core part of wireless networking

education: CMU, Princeton, Purdue, Northwestern, Shanghai Jiao

Tong, and other universities teach R2-F2 in their wireless network-

ing classes.

The challenge of reducing uplink feedback in multi-antenna sys-

tem has been acknowledged to be a key issue for next generation

cellular systems in the LTE standardization process [5]. Given the

increased focus on using computational techniques at the physical

layer, we envision that in the following decade, many of the tech-

niques and systems discussed here will be parts of standards for

cellular systems.

2 CONCLUSION
R2-F2 demonstrated how the performance of next-generation cel-

lular networks can be enhanced by the use of computational tech-

niques that leverage the interactions between wireless signals and

their physical environments. In the last three years, this intuition

has led to follow-up work in multiple research domains: cellular net-

works, mmWave systems, and wireless security. Beyond research,

the work has percolated into education curriculum for wireless net-

working, and has contributed to discussions in the LTE standards

body. We hope that in the next few years, one of R2-F2’s iterations

will form a core component of multi-antenna cellular networks

deployed worldwide.
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