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The ever-increasing demand for data has forced cellular networks
towards advanced multi-antenna (MIMO) techniques. However,
advanced MIMO solutions such as massive MIMO, coordinated
multi-point, distributed MIMO, and multi-user MIMO, all require
the base station to know the downlink channels to the client. In the
absence of this information, the base station cannot beamform its
signal to its users. Therefore, base stations require user devices to
perform the measurements and send the channels back to the bases-
tation as feedback. This feedback generates significant overhead
that scales linearly with the number of antennas, and is a bottle-
neck for next generation of cellular networks with large antenna
deployments.

Our work, R2-F2 (originally described in [10]), takes a differ-
ent approach. R2-F2 enables cellular base stations to estimate the
downlink channels without any user feedback at all. R2-F2 uses
channel measurements on the uplink, i.e. on signals transmitted
from the client and received at the base station, to infer downlink
channels. The key challenge in building R2-F2 is that a majority of
cellular networks (all major networks in United States) use different
frequencies for uplink transmissions from the client and downlink
transmissions from the basestation, i.e. they use Frequency-division
Duplexing (FDD). Therefore, to infer downlink channels from up-
link channels, R2-F2 must answer a fundamental question: How do
we infer the wireless channels on one frequency band by observing
those channels on a different band?
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Figure 1: R2-F2’s Approach: R2-F2 extracts the paths of the
signal from channels on frequency band-1 to reconstruct the
corresponding channels on frequency band-2.

To answer this fundamental question, R2-F2 builds a new bridge
between two different streams of wireless networking research:
communication and localization. R2-F2 infers wireless channels
across frequencies by leveraging a simple observation: while the
channels change with frequencies, the underlying physical paths
traversed by the signal stay the same. R2-F2 builds on past research
in RF-based localization [9, 12] to develop a transform that can
infer parameters (like distance, angle, etc.) of the physical paths
traversed by the signal from uplink channels measured at the base
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station. Once it has characterized the physical paths, it can invert
the transform to convert these physical paths to wireless channels
on a different frequency on the downlink (see Fig. 1). Since R2-F2
can convert channels from one frequency band to another frequency
band, it enables cellular networks to benefit from MIMO techniques
without incurring the channel feedback overhead.

1 IMPACT AND FOLLOW-UP

R2-F2 advances the state-of-the-art along two axes. First, it proposes
the use of computational techniques at the physical(PHY) layer, i.e.,
relying on channel estimates that are not physically measured but
computationally estimated. Second, it shows how wireless channels
measured at one frequency band can be translated into wireless
channels at a different frequency band. Both these contributions
have been built upon by researchers in the area, and have led to
new research directions. We discuss these directions below:

Pushing PHY Techniques to the Edge: The proliferation of low
power resource-constrained IoT devices has precipitated the trend
of minimizing resource usage on the end user devices and pushing
computations to the edge devices (like IoT base stations, Wi-Fi
access points, etc.). A subset of this trend has been to offload the
physical layer compute from the client to the edge. R2-F2 was an
early work in this direction as it eliminates the channel estimation
and channel feedback overhead of the client.

Ever since, multiple researchers have focused on building on
R2-F2 to develop more accurate computational methods for similar
problems in cellular networking research. One line of work has
focused on using super-resolution to better estimate the underlying
physical parameters from wireless channels [11, 13]. Inspired by the
same intuition as R2-F2 some recent work [2, 7] has adopted deep
learning methods for accomplishing the task of converting uplink
channels to downlink channels without requiring any additional
information.

Beyond cellular networks, multiple researchers [3, 4] have built
on R2-F2 to demonstrate the benefits of channel prediction in unli-
censed spectrum like Wi-Fi or LPWAN:S. For instance, [4] builds a
channel prediction algorithm for low power sensor networks that
can increase battery life of sensors by 230%. It does so by predicting
wireless channels across frequency bands, and using this prediction
to pick a frequency that optimizes the communication between the
sensor and the base station. The channel computation and opti-
mization is done on the base station to offload any overheads on
the client device.
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mmWave Beam Alignment: Recent years have seen proliferation
of research in the mmWave networking space. mmWave frequency
bands offers orders of magnitude higher bandwidth than Wi-Fi
or cellular networks, and hence are crucial for high throughput
applications like wireless virtual reality, or video streaming. Since
mmWave devices operate at much higher frequencies (28 GHz
or 60 GHz, as opposed to sub-6 GHz for Wi-Fi), they experience
significantly higher attenuation. To overcome this attenuation, they
must use narrow beams to communicate between the transmitter
and receiver. As a consequence, the transmitter and receiver must
align their beams before communication can begin. This beam
alignment process leads to latencies of tens of milliseconds, thereby
negating the advantage of mmWave networks for latency sensitive
applications, and mobile devices where the alignment needs to be
periodically performed.

An active area of research [1, 8] aims to perform this beam
alignment using wireless channel information on other frequency
bands (like Wi-Fi). The core idea is that the correct beam alignment
depends on the physical configuration of the underlying paths that
the signal can travel from the transmitter to the receiver. Similar
to R2-F2, the physical configuration of paths can be inferred using
wireless channels at much lower frequencies like Wi-Fi and cellular
without requiring directional beams and beam alignment. Once
these physical parameters of the underlying space are identified,
these parameters can be used to infer the possible beam alignments
at the higher frequencies used for mmWave transmissions.

Physical Layer Security: Wireless channels sit at the core of phys-
ical layer security methods. Past work has tried to use wireless chan-
nels as secure keys for information exchange under the assumption
that wireless channels cannot be inferred without explicitly measur-
ing them between two locations. The ability to infer these channels
without explicitly measuring them has opened up new possibilities
for security attacks and defences.

Since R2-F2 demonstrates the ability to measure wireless chan-
nels across frequencies, new security methods [6] use the inferred
channels as alternatives to key exchange in cellular networks. The
base station and client can now have a shared key (i.e. the down-
link channel) without requiring either of them to send this key to
each other. On the other hand, new attacks [14] have emerged that
exploit this ability to infer wireless channels to estimate wireless
channels between two devices by snooping on communication be-
tween them. When viewed in conjunction with newer and more
accurate computational techniques for inferring channels, this line
of research can lead to more potent attacks over time.

1.1 Impact Beyond Research

R2-F2 bridged wireless communication and localization to show
how wireless channels can be inferred across frequency bands by go-
ing through underlying physical representations. To illustrate such
cross-connections between different areas of wireless networking
research, the paper has become a core part of wireless networking
education: CMU, Princeton, Purdue, Northwestern, Shanghai Jiao
Tong, and other universities teach R2-F2 in their wireless network-
ing classes.

The challenge of reducing uplink feedback in multi-antenna sys-
tem has been acknowledged to be a key issue for next generation
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cellular systems in the LTE standardization process [5]. Given the
increased focus on using computational techniques at the physical
layer, we envision that in the following decade, many of the tech-
niques and systems discussed here will be parts of standards for
cellular systems.

2 CONCLUSION

R2-F2 demonstrated how the performance of next-generation cel-
lular networks can be enhanced by the use of computational tech-
niques that leverage the interactions between wireless signals and
their physical environments. In the last three years, this intuition
has led to follow-up work in multiple research domains: cellular net-
works, mmWave systems, and wireless security. Beyond research,
the work has percolated into education curriculum for wireless net-
working, and has contributed to discussions in the LTE standards
body. We hope that in the next few years, one of R2-F2’s iterations
will form a core component of multi-antenna cellular networks
deployed worldwide.
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