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ABSTRACT
Wireless sensing has demonstrated the potential of using
Wi-Fi signals to track people and objects, even behind walls.
Yet, prior work in this space aims to merely detect the pres-
ence of objects around corners, rather than their type. In
this paper, we explore the feasibility of the following re-
search question: “Can commodity Wi-Fi radios detect both
the location and type of moving objects around them?”. We
present IntuWition, a complementary sensing system that
can sense the location and type of material of objects in the
environment, including those out of line-of-sight. It achieves
this by sensing wireless signals reflected off surrounding ob-
jects using commodity Wi-Fi radios, whose signals penetrate
walls and occlusions. At the core of IntuWition is the idea
that different materials reflect and scatter polarized waves in
different ways. We build upon ideas from RADAR Polarime-
try to detect the material of objects across spatial locations,
despite mobility of the sensing device and the hardware non-
idealities of commodity Wi-Fi radios. A detailed feasibility
study reveals an average accuracy of 95% in line-of-sight and
92% in non-line-of-sight in classifying five types of materials:
copper, aluminum, plywood, birch, and human. Finally, we
present a proof-of-concept application of our system on an
autonomous UAV that uses its onboard Wi-Fi radios to sense
whether an occlusion is a person versus another UAV.
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1 INTRODUCTION
Recent years have seen an explosion in wireless sensing
and tracking research, from people to emotions to objects.
However, most existing work in the wireless sensing space
do not sense the precise material composition of the objects
they track. Yet, in many occasions wireless radios may need
to be aware of the type of objects in the environment, beyond
their location. For instance, consider autonomous UAVs that
may choose to use their onboard Wi-Fi radios to detect if
an object around the corner is a person or another drone.
This could allow it to respond differently in either case – for
example by giving the human a larger berth versus moving
up vertically to avoid the drone (see Fig. 1). Beyond UAVs,
object type sensing could transform ordinary Wi-Fi devices
into sensors that identify objects around the corner, with
applications in search-and-rescue, smart occupancy sensing,
vehicular safety and beyond.

Unfortunately, state-of-the-art sensing solutions fall short
of localizing and discerning occluded obstacles. For instance,
cameras can both localize and identify objects, but operate
solely in line-of-sight. This could be addressed with high-
resolution aircraft RADARs; however, these bulky devices
are not portable and are highly expensive [4]. Further, newer
radars designed for flight are often at high frequencies for
higher resolution, but this comes at the cost of reduced abil-
ity to propagate through and around materials and 6x the
power consumption over a typical Wi-Fi router [3]. Wi-Fi
based sensing systems [5, 34] can penetrate walls and obsta-
cles unlike light to track hidden objects, but have not been
comprehensively explored for material sensing. In this paper,
we ask: “Can commodity Wi-Fi radios sense the location and
type of moving objects?”

We present IntuWition, a system that explores the feasibil-
ity of identifying both the material and location of surround-
ing objects using commodity Wi-Fi. We envision IntuWition
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Figure 1: IntuWition helps detect the type of mate-
rial of an object hidden from view. This could assist,
say a drone’s path planning algorithm, to change its
planned path (blue) to a new path (purple). For exam-
ple, it could swerve upwards to avoid another drone,
but would give a human a wide berth.

as a complementary sensing modality to add non-line-of-
sight and materials-sensing capabilities to existing sensing
systems. We deploy Wi-Fi radios indoors and outdoors on a
college campus to explore the materials sensing capabilities
of WiFi. IntuWition processes wireless channels between
pairs of commodity Wi-Fi radios to accurately estimate and
track the location and material of different objects in its sur-
roundings, including wooden, metal, and human obstacles.
We further present a proof-of-concept application demon-
strating IntuWition’s performance on autonomous UAVs in
distinguishing between occluded humans vs. other drones
both indoors and outdoors.

At the heart of IntuWition is an approach that infers ma-
terial properties of objects in the environment by measuring
the wireless signals that reflect off them. In particular, it
captures a specific property: the polarization of the reflected
waves from an object. When a polarized incident wireless
signal reflects off the surface of different objects, it behaves
differently based on the texture and material of the objects.
Specifically, metal absorbs and re-emits the wave, resulting
in a change of polarization pattern; smooth surfaces reflect
the waves with polarization intact; and rough surfaces scat-
ter the waves and diffuse polarization. In effect, this causes a
change in the observed polarization of the reflected wave.We
demonstrate that by measuring the polarization of reflected
waves from surrounding objects, one can infer the material
they are composed of. We draw inspiration from the remote
sensing community, where aircrafts image the topography
using RADAR polarimetry [33, 42] to distinguish between
trees, open fields and even infer soil moisture using reflected
signals.
To bring RADAR polarimetry to commodity Wi-Fi ra-

dios, IntuWition measures the Wi-Fi signal from a vertically-
polarized transmitter antenna to threemutually-perpendicular
polarized receiving antennas, all of which are atop a Wi-Fi
enabled device. We then compare the measured power of the

signal across these antennas to infer its material composition.
IntuWition builds a multi-layer perceptron model to achieve
this independent of other parameters that influence received
signals such as the size, thickness, texture, distance, and an-
gle of an object. A key challenge in IntuWition’s design is
the ability to detect and discard signals that are reflected
and scattered by multiple objects sequentially and therefore
experience a hybrid change in polarization that corresponds
to none of their underlying materials. IntuWition achieves
this by reverse-engineering and recognizing the unique ways
in which a Wi-Fi signal’s polarization compounds when it
bounces off many objects (see Sec. 5).
A second challenge IntuWition addresses is to separate

the signals that reflect exclusively off each individual object
in the environment in 3-D space, prior to analyzing its ma-
terial composition. IntuWition does so by processing these
signals to measure the time-of-flight they experience as they
reflect off each obstacle over brief slices of time. Addition-
ally, mobility of the sensing autonomous systems can allow
for views the same object from multiple perspectives. These
samples further allow us to triangulate its 3-D physical posi-
tion and to filter out the object’s reflected signal for material
classification. A key challenge in doing so pertains to the
hardware non-idealities of commodity wireless radios that
induce random errors in the measured time-of-flight owing
to arbitrary timing offsets between the Wi-Fi transmitter
and receiver, both of which are two distinct radio chips with
different clocks. IntuWition addresses this challenge by si-
multaneously sending signals from the transmitter along two
pathways: a wired pathway and a wireless pathway, only
the latter of which is impacted by the environment. We then
estimate timing offsets from the wired pathway to correct
for its effect on the wireless pathway. The rest of this paper
describes how IntuWition addresses this and other hardware
non-idealities such as carrier frequency offsets, sampling off-
sets, and phase shifts between the transmitting and receiving
RF chains. Further, we discuss the limitations of IntuWition
in Sec. 7: It often misses small, fast-moving or well-shielded
objects, and cannot tell apart materials with similar polariza-
tion characteristics (e.g. two different humans).

We implement IntuWition on Intel Galileo boards equipped
with commodity Intel 5300 Wi-Fi cards [16]. We perform a
detailed feasibility study in large indoor and outdoor spaces
in a university campus and distinguish between commonma-
terial types: copper, aluminum, humans, plywood and birch,
in a variety of line-of-sight, non-line-of-sight, stationary, and
mobile settings. We further mount our Wi-Fi platform on
a UAV (DJI Matrice 100) to classify between humans and
drones for indoor and outdoor testing. Our results reveal the
following:



• Our system classifies between 5 types of material (cop-
per, aluminum, plywood, birch, and human) of a vari-
ety of sizes and orientations at an accuracy of 95% in
line-of-sight and 92% in non-line-of-sight settings.

• Our system can classify objects that are 0.42 m apart
in line-of-sight and 0.55 m apart in non-line-of-sight.

• Our system classifies between humans and droneswith
accuracy averaging 89% at UAV speeds of up to 2 m/s
in dynamic indoor and outdoor settings.

Contributions: This paper presents IntuWition, to our
knowledge, the first system that explores the use of commod-
ity Wi-Fi radios in discerning objects in the environment
using polarization. We demonstrate how IntuWition detects
the material and location of occluded obstacles, opening up
applications for autonomous UAVs and beyond. IntuWition
is fully implemented and evaluated indoors and outdoors.

2 RELATEDWORK
Related work falls under three broad categories:
Wireless Sensing: Recent years have seen extensive work
in sensing the environment using wireless communication
radios. Past work has leveraged variations inWi-Fi signals for
activity recognition [34, 47], occupancy sensing [6, 11, 12],
imaging [20, 37] and location tracking [5, 22, 25, 49, 50]. In-
deed, a range of device-free applications have been proposed
by fine-grained motion tracking of users, sensitive enough
for even breath/heart rate tracking [52] and keystroke sens-
ing [7]. Perhaps most closely related to our work are recent
material detection systems [13, 46, 48] that can detect mate-
rial by sensing how signals are attenuated by objects placed
between the transmitter and receiver. Much of this work
assumes multiple access points or bulky infrastructure in the
environment and are therefore ill-suited for mobile platforms
such as UAVs.

This paper instead seeks to discover the location and ma-
terial of multiple potentially occluded objects in the envi-
ronment using moving Wi-Fi radios on a mobile platform
without supporting infrastructure. Key to our approach is the
use of polarization of reflected signals to detect the material
of objects using commodity Wi-Fi radios.
RADAR & Polarimetry: RADAR systems use synthetic
aperture radar polarimetry for topography imaging [9, 33,
38, 39]. Aircraft and satellites can even use polarization of
received RADAR signals to measure soil moisture of farm-
land [42]. Recent years has seen the persistence of polarime-
try largely unchanged as a sensing modality but used with
new materials [29] and for new applications [54]. In contrast
to this rich literature, our approach seeks to bring radar po-
larimetry to light-weight commodity Wi-Fi cards. For this,
we overcome many challenges such as the near-far effect

Figure 2: Scattering off (A) a smooth surface, (B) a
smooth metallic surface, and (C) a rough surface pro-
duces differently polarized signals.

and imperfections of such radios. We further distinguish our-
selves from existing polarimetric systems in that our prox-
imity is much closer than an airplane or a satellite, where
polarimetry systems are commonly deployed.

Project Soli, Google’s RADAR-based system for object ma-
terial recognition [53] assumes extremely close proximity
between the object and the RADAR system. Synthetic Aper-
ture Radar has also been considered for device tracking of
Wi-Fi [26], cellular [27] and RFID [41, 45] tags. IntuWition
additionally uses polarization for device-free material sens-
ing of surrounding objects.

Other Sensing Systems for UAVs and Beyond: Cam-
eras [31], LIDARs [36] and depth imaging [19] are often used
to detect occluded objects, for instance by autonomous vehi-
cles and UAVs. While these sense obstacles in direct field of
view, they fail to detect objects that are occluded (e.g. hid-
den pedestrian or drones around the corner) – a challenge
IntuWition targets. IntuWition aims to do so without sup-
porting infrastructure in contrast to [14, 28, 35]. We further
seek to sense the environment, not characteristics of a UAV
as in [32]. Finally, we distinguish ourselves from [23], likely
the most related paper to our work, in that we seek to sense
the environment via reflections rather than penetrations.

Proximity RADARs have been used to detect collisions in
automobiles [15] and UAVs [1], although they do not sense
materials. Recent work has explored mm-wave radars to
sense the immediate environment of UAVs and autonomous
cars [21, 56]. In contrast, we leverage commodity Wi-Fi for
material sensing for two reasons: (1) We can detect occluded
objects, unlike mm-wave signals that are blocked by walls;
(2) Wi-Fi is inexpensive, light-weight and already present in
many mobile platforms, such as phones, tablets and drones.



3 POLARIMETRY FOR SENSING
This section provides a brief primer on how capturing the
polarization of signals that scatter off an object provides in-
formation about the material it is made of. Fig. 2 illustrates
three extreme instances of scattering responses for a per-
fectly polarized incident wave: (A) The incident wave reflects
off a perfectly smooth non-metallic surface, maintaining lin-
ear polarization. (B) The incident wave reflects off a perfectly
smooth metallic surface, eliminating linear polarization [24].
(C) The incident wave scatters off a perfectly rough surface,
which may or may induce polarization based on the mate-
rial. Hence, by measuring the polarization and power of the
received waves, we can distinguish objects based on texture
and material (metallic or otherwise).
To better understand this phenomenon, we consider a

2-D case for simplicity, a surface defined by parallel and
perpendicular vectors p and s, respectively. As described
in [17], an incident s-polarized signal can be denoted as
Es (t) = Ae jωt ês . Upon reflection off a surface, amplitude,
phase, and orientation can all be affected, resulting in a re-
flected signal Er (t) = Ae jωt (rss ê

s + rsp ê
p ), where rss and rsp

are complex numbers describing how the s-oriented incident
wave has changed in phase and power along each of the s
and p components. Note that depending on the two phase
value shifts, the locus of our signal might change from linear
polarization to circular or elliptical – if they change by the
same amount, or by a factor of π , linearly polarization is
preserved.

Because of perpendicular linearly-polarized receiving an-
tennas, IntuWition measures ês and êp separately, thus being
able tomeasurematerial-specific parameters rss and rsp . Hav-
ing antennas that allow us to receive different polarizations
of data opens the door to polarimetry. Furthermore, receiv-
ing these signals separately allows us to take the ratio of
these signals to remove power and phase shifts due to prop-
agation, which affects signals similarly regardless of their
orientation.
We note that in practice this property is influenced by

the location, geometry, orientation and texture of reflecting
surfaces in the environment besides material composition.
The following sections present models to process wireless
channels to decouple the reflector’s material composition
from all the remaining quantities.

4 INTUWITION IN A NUTSHELL
IntuWition’s objective is to allow a Wi-Fi enabled mobile
devices to obtain both the 3-D location and the material com-
position of surrounding objects, including those occluded
from view. It aims to do this using existing commodity Wi-
Fi radios on the drone, without requiring supporting wire-
less infrastructure in the environment. In other words, an

Figure 3: IntuWition Workflow: An example in 2-D
(for simplicity) shows how IntuWition isolates loca-
tions of two objects and compares powers across hori-
zontally and vertically polarized antennas to inferma-
terial type.

IntuWition device must both transmit and receive Wi-Fi
signals and analyze them to report the location and mate-
rial of surrounding reflectors. Fig. 3 presents an illustrative
workflow of IntuWition.

4.1 Learning Material Composition
IntuWition determines thematerial composition of any object-
of-interest in the environment by studying the polarization
of the signal reflected from it. Specifically, IntuWition first
uses the known time-of-flight of the reflected signal from an
object to develop a filter that outputs the wireless channel
component that corresponds solely to the reflected path. It
then processes this signal component on a horizontal and
vertically polarized receiving antenna and measures their ra-
tio to determine the extent to which the reflection impacted
the polarization of the transmitted signal. IntuWition mea-
sures this ratio across a range of frequency bands, developing
a vector that captures the impact of the material on signal
polarization. We then build a model based on multi-layer
perceptrons to classify the material and type of the object-of-
interest. We also compare our model with five other typical
machine learning models.
Extracting Features: Among the key challenges in ma-
terial classification is identifying the best features that are
unique to materials. IntuWition relies on the change in po-
larization of the received signal from the transmitted signal
across different frequencies. Specifically, we filter different
subsets of the wireless channels, each spanning a different
range of frequencies to obtain the wireless channel compo-
nent reflected from the object-of-interest. We then compare
these channels at the horizontal and vertical antennas to
study their polarization across subsets of frequency bands.
Finally, we feed the ratio between channels at the horizontal
and vertical antennas into our model. IntuWition leverages



a Multi-Layer Perceptron model to process this feature vec-
tor and infer the object material and type, while remaining
robust to device movement and signal multipath. Sec. 5.1
details IntuWition’s learning models.
Sensing Mobile Objects over Time: Perhaps the most
challenging objects to track are objects that are themselves
moving with time. For instance, consider two objects whose
trajectories intersect. While IntuWition can identify an ap-
proximate relative location of each moving object along their
respective trajectories, it may erroneously swap the trajec-
tories of the two when they intersect. Sensing materials of
objects provides a natural solution to this problem. Specifi-
cally, IntuWition can use the polarization of reflected signals
from each object to identify it and accurately track its po-
sition over time without ambiguity. Sec. 5.2 describes how
we exploit the synergy between localization and material
sensing to improve each other’s performance.

4.2 Locating Surrounding Objects
To accurately locate surrounding objects, IntuWition ana-
lyzes the wireless channel-state-information available at a
compact commodity 3-antenna Wi-Fi receiver from a co-
located Wi-Fi transmitter on the drones. These channels are
a combination of signals propagating along different paths
as they reflect off various surrounding objects, as well as the
direct path between the transmitter and receiver. IntuWition
processes these wireless channels across Wi-Fi frequency
bands and measures the time-of-flight experienced by the
signals along each path. When multiplied by the speed of
light, this provides the distance traversed by the signal from
the transmitter to the reflector and then back to the receiver.
By computing these distances from multiple perspectives as
the drone flies in the 3-D space, IntuWition triangulates the
3-D position of the object-of-interest.

While there has been much work on localizing surround-
ing objects using RADAR [15, 44] and recent work on wire-
less material sensing applications [13, 46, 48], bringing it
to inexpensive and commodity Wi-Fi radios on mobile sys-
tems without external supporting infrastructure brings forth
several new challenges that IntuWition must address:
Disentangling Signal Paths: First, IntuWition must sepa-
rate signal paths from various objects surrounding themobile
device. IntuWition achieves this by actively exploiting the
mobility of the device itself (e.g. a moving UAV or tablet).
Sec. 6.1 shows how by processing the received wireless chan-
nels across spatial locations and frequency of operation of
Wi-Fi radios, one can simultaneously obtain time-of-flight
and angle-of-arrival of surrounding objects.
Locating Occluded Objects: Second, IntuWition must de-
velop algorithms that can analyze weak reflections from

Figure 4: IntuWition transmits signals from a verti-
cally polarized antenna to 3 mutually perpendicular
receive antennas and processes polarization changes
due to reflections from materials.

distant objects and those that are occluded by other objects
(e.g. walls, trees, etc.). IntuWition achieves this by sensing
changes in the wireless channels from weak reflections to
detect the presence of the moving objects that produce them.
A key challenge in implementing this is to filter out the
movement of the drone itself, as it also changes wireless
channels, over and above the movement of the object-of-
interest. IntuWition therefore develops a novel background
subtraction algorithm that eliminates the effect of the drone’s
movement in the wireless channels to detect the movement
of surrounding objects. Sec. 6.2 describes our approach in
greater detail.

5 MATERIAL SENSING
This section describes how IntuWition senses the material
properties of a surrounding object. We assume the received
signal has been pre-processed to localize and isolate the
signal component from a specific object of interest (detailed
in Sec. 6). We describe how we bring RADAR polarimetry
to the Wi-Fi context, while mitigating the limitations of
commodity Wi-Fi radios.
Hardware Setup: IntuWition’s setup consists of four Wi-
Fi radios – a transmitting device broadcasts packets from a
vertically polarized antenna to three receiving light-weight
Wi-Fi chips, each with a mutually perpendicularly polarized
receiver antenna on port one. Note that inexpensive omni-
directional whip antennas can be used as vertically polarized
antennas because of their natural propagation pattern. We
connect a wire to the transmitter and, via a splitter and
attenuated cable, connect this to antenna port 2 on each
receiving chip. This provides resilience to phase errors from
hardware offsets (details in Sec. 6.1).

Fig. 4 shows an illustration of how the polarization pattern
of signal is changed after reflections from a material. If no
reflector is present in the environment, the three mutually
perpendicular receiver antennas RX1, RX2, RX3will only re-
ceive the single signal polarization pattern of the direct path
(Path1). In the presence of a reflector, the receive antennas



also obtain signals along Path2whose pattern of polarization
depends on the material of the reflector.
IntuWition uses three receiving antennas instead of two

as is used in the traditional RADAR polarimetry because
our transmitter and receiver are at about the same elevation
level of the obstacle we are sensing. As a result, modeling
the sensed object as a 2-D reflecting plate (as is the case from
a satellite or a high plane) is no longer valid. Even when
movement is along four controllable degrees of freedom (say
on a quadcopter drone), three antennas are sufficient to col-
lect information about scattering from various surrounding
objects (including the floor), despite the movement of the
platform itself.
Approach: IntuWition employs Multi Layer Perceptrons
to classify different materials for a given object. Our system
takes as input the polarization of the reflected signal from a
given object across frequencies. It then extracts features via
a multi-layer perceptron that closely correlate with material
composition of the object. A key challenge we face in de-
signing our material classification algorithm is to decouple
various other factors that influence the wireless channels,
such as object size, texture and orientation. The rest of this
section details our solutions to deal with these challenges as
well as our choice of features and classification algorithm.

5.1 Building the Machine Learning Model
Prior to extracting features, IntuWition uses its object lo-
calization algorithm (details in Sec. 6) to filter the wireless
channel from an object of interest. In particular, it measures
this channel at all receive antennas across OFDM subcarriers.
Further, IntuWition repeats the localization algorithm over
many different subsets of Wi-Fi operating frequencies to ob-
tain the wireless channel component reflected off the object.
In doing so, IntuWition retrieves a vector of wireless chan-
nels per-antenna from the object versus frequency – both
across different subsets of frequency bands and subcarriers.
Next, IntuWition computes the ratios of the channel re-

ceived between pairs of antennas (Fig. 4). By doing so, we
eliminate the effect of distance of the object on signal power
and focus instead on polarization, which is highly corre-
lated with the material composition of the object. The result-
ing three channel ratios sampled across frequencies form a
vector of over a thousand elements. Feeding all of these as
features into our machine learning model would be counter-
productive, given that it requires a complex higher-dimensional
classification model that is highly susceptible to over-fitting.
However, we find that channel ratios sampled across all

frequencies are not all equally important as features, ow-
ing to differences in the quality of channels (e.g. channel
fading and interference on some frequencies) or the num-
ber of measurements available. Hence, IntuWition selects

a subset of features from the wireless channel ratios across
frequencies. We use a greedy algorithm to rank features ac-
cording to number of successful measurements across the
whole channel and select the top 200 ones. Then we remove
the samples which have missing values among those 200
features. In doing so, we can reduce the number of features
to avoid over-fitting.
While a range of machine learning classification models

are available, IntuWition employs Multi-Layer Perceptrons
(MLPs) to train its classifier based on a theoretical analy-
sis and an empirical comparison. MLPs have been widely
observed to generalize well compared to hand-crafted fea-
tures in recent deep learning literature [43], since they auto-
matically learn features from input data. We construct two
versions of MLPs which take raw feature values as input
and outputs either the material class or an object type. The
latter pertains to our proof-of-concept demonstration of our
system on a UAV, which classifies between two classes of
objects – drones and humans who may have multiple (yet
different) classes of materials on their surface.

Besides MLP, we considered alternative machine learning
models. Sec. 9 presents an empirical comparison of various
machine learning models: MLP, RBF-SVM, k-NN, PCA, and
Naïve Bayes, and shows that MLPs provide the maximum
classification accuracy for us.
Training and Testing:We train the model by feeding the
top 200 features to Multi-Layer Perceptrons. These features
were selected as themost impactful out of all the power ratios
between pairs of antennas captured at frequencies across
large bandwidth. To avoid the overfitting of the training
model, we collect the training data in different radio environ-
ments (indoor and outdoor), across multiple days. We collect
the data of both sheets of different materials and different
textures of real objects like chairs. We train the model for 500
epochs, where one epoch is a full pass of the data through
the neural net. We randomly shuffle the training data after
each epoch. Our batch size is 32 and we randomly select
one batch at a time from the training data sets to feed into
the neural nets. We divide the entire dataset into separate
training and testing dataset to evaluate the classification
network. Our MLP contains three hidden layers with each
layer having 200 units and using a rectified linear unit as the
activation function. The network is trained to optimize for
cross-entropy loss using the Adadelta algorithm [55].

5.2 Tracking and Sensing Multiple Objects
Our discussion so far has exploited localization to isolate
and find the material that objects in the environment are
made of. However, sensing the materials of objects can also
improve the performance of localization of these objects. To



Figure 5: IntuWition can track objectswith ambiguous
intersecting paths by tagging objects with their respec-
tive materials.

see how, we consider a challenging problem in device-free lo-
cation tracking: tracking multiple objects whose trajectories
intersect.
Ambiguous Trajectories: Fig. 5 shows an example of two
objects – a pedestrian and a bicycle whose trajectories in-
tersect at a crosswalk. Traditional wireless device-free lo-
calization systems struggle to distinguish between the two
trajectories in Fig. 5(a) and Fig. 5(b) – both of which result
in an identical set of observed times-of-flight of reflectors.

IntuWition can resolve this challenge by exploiting a very
simple property – while the location of an object can change
over time, its material composition cannot. As a result, In-
tuWition can use the measured material composition of the
two objects that are tracked to distinguish between the tra-
jectories in Fig. 5(a) and (b). An important limitation of this
approach is that it cannot disambiguate objects of precisely
the same material. We believe that sensing other properties
(e.g. size, shape, etc.) along with material can help address
this limitation – a task for future work.
Spurious Multi-Object Reflections: A second challenge
that IntuWition resolves is to eliminate spurious reflections
off multiple objects before reaching the receiver. The result-
ing polarization observed is a combination of the properties
of all materials through which the signals reflect. Specifically,
the phase shift of rss and rsp values of the signal received
(see Sec. 3) that captures signal polarization is the sum of
the rss and rsp values of each material. We note that signal
absorptions cause limited impact on polarization [10].

IntuWition addresses this challenge by actively modeling
multi-object polarization. In particular, IntuWition sorts ob-
jects based on their observed-value of time-of-flight (i.e. a
measure of distance) relative to the vehicle. It then progres-
sively labels each object as legitimate, only marking objects
as spurious if its phase shift is the sum of subsets of legiti-
mate phase shifts. At a high level, this is because the only
propagation effects that affect the horizontally and vertically
polarized signals asymmetrically at the receiver are due to
reflections from obstacles, and the effect of the final received

signal can be modeled as the product of the transmitted sig-
nal along with each reflector. This translates to a sum in
phase effects. Thus, IntuWition quickly eliminates spurious
reflections off multiple objects.

5.3 Material Properties vs. Other Effects
From atop a mobile platform, our system must deal with
materials at various ranges, sizes, orientations, and textures.
Our system must therefore extract the effect of material
properties of the object from wireless channels from the
variety of other properties of surfaces that influence channels:
object size, orientation, texture and location.
Effect of Location: In handling objects of different sizes,
ranges and orientations, measuring changes in polarization
actually emerges as an advantageous approach when com-
pared with measuring pure power. While reflected power
could certainly distinguish a wooden and metal sheet at the
same distance, it remains vulnerable to multipath and is sub-
ject to ambiguity, e.g. between a nearby wooden sheet and
distant metal sheet. We instead use power ratios of the chan-
nels from a vertically polarized transmitter received by three
perpendicular linearly polarized antennas. This ensures that
the distance traversed to the reflector is effectively factored
out of our ratio reading.
Effect of Object Size and Orientation: The challenges of
varying reflector sizes and angular orientations would pose a
similar issue for power-based material identification. These
properties are captured in radar ranging by a property σ
which they call the Radar Cross Section (RCS). Also known as
the effective area, RCS is the value associated with what size
an object’s reflection, independent of what its dimensions
actually are, appears to a radar sensing system. Angle of
orientation and physical size of this object both affect this, as
intuitively, a 4’x4’ sheet oriented at 30 degrees would appear
larger than one oriented at 45 degrees. Our multi-antenna
approach to measuring rotations in polarization would be
affected by the same effective area across all three antennas,
thus removing the effect of size and angular orientation from
isolating the material.
Effect of Surface Texture: We note that surface texture
and material composition can be decoupled by looking at
a window of reflected values, instead of a single point. Pol-
ished surfaces show a distinct peak at the time of flight of the
reflected object (along with a few later peaks due to multi-
path effects). On the other hand, in rough volume reflectors,
signals transmitted through the initial surface but have mul-
tiple opportunities to reflect through the width of the object,
resulting in a shorter, wider peak.

Given the entire spectrum of possible surface textures, we
could not exhaustively test this space, but to help account



for this effect, we train our machine learning models (Multi-
Layer Perceptron) on diverse textures per material - such
as different finishes of metal, or a wooden sheet sanded by
different grit sandpaper. We present our results in 9.3.
Effect of Incident Angle: The incident angle affects polar-
ization by the well-studied Fresnel Equations.[24]. We train
our models with many different angles to help account for
this effect.

6 OBJECT LOCALIZATION
Prior to sensing thematerial of an object-of-interest in the en-
vironment, IntuWition needs to process the received wireless
channel to separate the wireless signal component reflected
off this object alone. IntuWition achieves this by first finding
the location of the object-of-interest, using signals from an
object, collected from different perspectives, to triangulate
its position.In the case of multiple objects, we remove peaks
using successive interference calculation and then remove
spurious multi-object reflections based on their rss and rsp
values, as described in 5.2. IntuWition then develops a filter
to extract the wireless signal component that emerges from
that particular location. The rest of this section describes
IntuWition’s approach to locate surrounding objects.

6.1 Separating Signal Paths in Mobile
Settings

IntuWition’s first task is to separate the signal components
arriving along multiple paths as they reflect off each object in
the environment. At first blush, IntuWition may achieve this
using prior work on RF localization using commodity Wi-Fi
radios [44]. Specifically, past systems seek to separate the
time-of-flight of different signal paths from the received sig-
nal, as they reflect off various objects in the environment. An
important factor that determines the resolution of measured
time-of-flight of various signal paths is the available band-
width (20 MHz for Wi-Fi). To mitigate this, past work [44]
stitches together wireless channel measurements across mul-
tiple frequency bands to emulate signals from a wide-band
receiver. However, an important challenge in combining fre-
quency bands in mobile contexts such as the UAV is that the
device moves in the 3-D space so that its location changes
significantly between channel measurements. Hence, chan-
nels across packets change both due to change in Wi-Fi
frequency as well as the change in device location between
measurements.

IntuWition addresses this challenge by actively modeling
both the frequency of operation and the movement of the
device (e.g. on a drone) in its analysis of the wireless channels.
In doing so, it retrieves both the angle-of-arrival and the time-
of-flight of reflecting surfaces simultaneously. The rest of
this analysis makes two simplifying assumptions for ease

Figure 6: (a) IntuWitionmeasures the distance and ori-
entation of objects of interest using the wireless chan-
nels that reflect off them. (b) Notation for device (e.g.
on a UAV) location along curved trajectories.

of exposition, which we relax later in this section: (1) The
device moves in 2-D space; (2) phase errors due to frequency
and timing offsets are accounted for.

Mathematically, assume that the device (Fig. 6) moves on
a 2-D trajectory that is at a distance li relative to its initial
position,ψi relative to its initial orientation and on frequency
fi when receiving packet i . We assume that the distance
between the reflector and the device is much greater than
the displacement of the vehicle across packets, allowing for
us to approximate that the angle of the reflector does not
change. To recover the time-of-flight and location of objects
in the environment, IntuWition builds upon the Bartlett
algorithm [26] in 2-dimensions. Specifically, we can write
the power of the wireless channel received along a distance
r and angle-of-arrival θ as:

P(r ,θ ) =

�����∑
i

hie
2π j fi

(
2r
c +

li cos(θ−ψi )
c

) �����2 (1)

The above power-profile will have peaks corresponding to
the polar coordinates (r ,θ ) of various objects in the environ-
ment relative to the vehicle. We can then extract the wireless
channels corresponding to any specific object of interest at
(r ,θ ) as:

h(r ,θ ) =
∑
i

hie
2π j fi

(
2r
c +

li cos(θ−ψi )
c

)
(2)

We show in Sec. 5 how one can detect the material of an
object at (r ,θ ) by analyzing h(r ,θ ) at the horizontally and
vertically polarized antennas across frequency.

While the above analysis assumes that the available Wi-Fi
frequencies and distances moved by the device between pack-
ets are uniformly spaced, in practice, this may not be true,
leading to spurious peaks in P(r ,θ ). IntuWition builds on past
work on wireless localization [44] to eliminate these peaks
by leveraging the sparsity of signal multipath. Specifically,
we assume that the signals that reflect off the environment
emerge from a small number of dominant paths, leading to



a sparse P(r ,θ ) with a few distinct peaks. Mathematically:

min
{∀p :Ap }

∑
p

|Ap |,

∑
i

�����hi −∑
p

Apwp

�����2 = 0 (3)

wi,p = e
−2π j fi

(
τp+

li cos(θp−ψi )
c

)
(4)

This optimization resembles a non-convex 2-D Non-Uniform
Discrete Fourier transform (2-D NDFT). IntuWition solves it
numerically using proximal gradient descent algorithms [18]
generalized to 2-D to accurately localize objects, without
being misled by spurious artifacts.

We make a few important generalizations of our approach:
(1) While the above optimization assumes the reflector is far
from the object, IntuWition solves the equivalent problem
for close reflectors through a maximum likelihood approach
that iterates over coordinates of closeby reflectors. As we
only care about nearby objects, the search space is relatively
small, enabling efficient optimization. (2) To mitigate the
effect of hardware offsets, we draw from past works [40, 51]
which connects two Wi-Fi chips by a wired pathway (via
RF attenuators) to enable synchronization. Specifically, we
connect a cable from pin 3 of the transmitter, split to pin 3 of
each of the three receivers, and divide each communication
channel by the reference cable channel. We then use this
ratio of the wireless channels between wireless and wired
pathways, across both horizontal and vertical antennas, to
eliminate frequency and timing offsets. (3) It is easy to see
that our analysis readily generalizes to 3-D by iterating over
the polar angle ϕp of any reflector p in the optimization as

well, i.e setting:wi,p = e
−2π j fi

(
τp+

li cos(θp−ψi ) sinϕp
c

)
.

6.2 Detecting Occluded Objects
Among the most significant challenges IntuWition faces is
detecting occluded objects, whose signals are received very
weakly at receiver. More problematically, the weak signals
of these objects are often overwhelmed by reflections from
the object in front of them. This is the classic problem of the
near-far effect faced by several wireless sensing solutions [6,
34]. Past solutions address this problem in several ways for
moving objects in the environment, the most common of
which is background subtraction [5, 6], where these systems
subtract the observed wireless channels between two time
instances to filter out what changed between them.

While IntuWition can benefit from these past solutions if
the device is static, they do not apply when the device moves.
This is because the wireless channels between measurements
change both due to changes in the environment and the
movement of the device itself.

IntuWition addresses this challenge by developing a back-
ground subtraction algorithm that accounts for the move-
ment of the device itself. Specifically, let us assume that
h(r ,θ ) and h′(r ,θ ) are the wireless channels along any given
direction (r ,θ ) measured at two time instances where the
device is displaced by a distance ∆d and re-oriented by ∆θ .
It follows that any object at (r ,θ ) at the first time instance is
now at (r − ∆d cosθ ,θ − ∆θ ) (provided r ≫ ∆d). As a result,
if the reflector at (r ,θ ) remain static, it is easy to see that
h(r ,θ ) = h′(r − ∆dcosθ ,θ − ∆θ ). One can therefore perform
background subtraction to detect moving object at each (r ,θ )
by subtracting the channels as follows:

∆h(r ,θ ) = h(r ,θ ) − h′(r − ∆d cosθ ,θ − ∆θ )

IntuWition can then process ∆h(r ,θ ) for each (r ,θ ) to detect
the material of moving objects at each location, even if their
signals are weakened due to occlusion.

6.3 Role Of Localization
Localization plays an enabling role to material sensing in
our system. It is not our primary technical contribution, but
localization is what allows us to isolate objects in the en-
vironment for materials classification and determines the
resolution of the system. Localization also removes occlu-
sions and determines the operational range of our system.
After the object is isolated, it is passed to the material sensing
algorithms described in §5 to isolate object characteristics.

7 LIMITATIONS OF INTUWITION
Given that our system is a feasibility study, we note some
important limitations of IntuWition(see §9 for evaluation):
It performs poorly when detecting weak reflectors whose
signals are attenuated due to distance or size. Its resolution in
separating multiple objects is limited by the total aggregate
bandwidth of Wi-Fi: about 0.4 m in our experiments. This
means that a human leaning on a wall may be misclassified.
It often misses fleeting reflections due to fast moving objects.
It cannot tell apart certain materials that have similar po-
larization characteristics or objects composed of the same
material (e.g. two different humans). We are also limited in
our ability to resolve a signal after significant multibounce
effects, as each reflection significantly reduces the power at
the receiver.

In addition, our system as amaterial classifiermay respond
most strongly to surface characteristics and misclassify cloth-
ing as humans, for example. In cases of extensive attenua-
tion, such as around-the-corner coupled with through-wall
sensing, our localization accuracy drops further. Finally, we
note that because of the use of background subtraction, our
system is most effective for systems where an object is in-
troduced or where an object is moving. However, objects



of sufficient size, reflectivity, and/or visibility can still be
detected without background subtraction.

8 IMPLEMENTATION
System Setup: We implement IntuWition using four WiFi
cards, one for transmission and three for receiving. Each
includes a linearly polarized antenna (Ettus Vert2450) con-
nected to each Intel 5300AGN card on the Intel Galileo Boards,
which run the Linux 802.11n CSI tool [16] to obtain channel
state information (Fig. 7). The transmitter also has an SMA
splitter and wire on the first port of the 5300AGN card that
carries a reference signal to the second port of the receivers
to synchronize all radios and remove phase errors caused
by hardware impediments (see Sec. 6.1). The wired line is
attenuated by 50 dB to avoid saturation. To measure the
polarimetry in 3D space, the three receiving antennas are
oriented perpendicular to each other. Note that we chose to
use three Wi-Fi cards, instead of one which would suffice
in principle, because we observed that the first port of the
Intel 5300AGN card had a consistently higher receive gain on
average when compared to the other ports (a peculiarity of
the chip). The overall weight of our sensing system is 439g,
which can be significantly reduced (to just the antennas)
should future Wi-Fi cards on mobile platforms (e.g. onboard
Wi-Fi on drones) report wireless channels as the Intel 5300
does. We place our WiFi receiver and transmitter, pictured
in 7A and B, on two setups for testing: a rolling cart, with a
separation of 42cm, and atop a drone as shown in 7C, with a
separation of 31cm.
We note that the use of WiFi chips with a future sensing

feature could reduce the chips needed to two (if one chip
could accept three receivers), would eliminate the need for
the Galileo boards, and could speed our channel hopping
process. Further, as we are only using channel measurements
for sensing, our transmissions are arbitrary packets which
could instead be data for the autonomous system.
Software and Run-Time: We implement IntuWition’s al-
gorithms in MATLAB/C++ (MLP implemented in Python)
in the cloud and track location at the rate of 8 Hz and sense
materials at the rate of 2 Hz. The main bottleneck in ensuring
faster, real-time analysis is the amount of time it takes to
sweep through all available WiFi channels in the ISM band
supported by the Intel 5300 including 5-GHz bands – a prob-
lem that may be remedied by future chipsets. In its current
state, a full frequency sweep for each receiver radio results
in, at most, a file 18.9kB. This requires a backhaul of 37.8kBps
for material sensing. For localization, the radios hop across
1/4th of the channels, so the backhaul required is the same.
Experimental Evaluation: Unless stated otherwise, our
evaluation across experiments are conducted in settings as

Figure 7: Setup: (A) 3 receiving and (B) 1 transmitting
antennas, (C) Augmented UAV setup. Indoor (left) &
outdoor testbeds (right)

described below. We evaluate the system in a 225 sq.m out-
door garage space, a 500 sq.m outdoor plaza, and four dif-
ferent indoor spaces ranging from 43-400 sq.m in a large
university campus (see Fig. 7).

Our evaluation consists of diverse types of objects of vari-
ous shapes, sizes and thicknesses. For our material tests, we
use sheets of copper(3’x3’), aluminum(2’x3’, 3’x3’), birch(2’x4’),
plywood(4’x2’), maple(4’x4’x.25", 4’x4’x.5", 4’x4’x.75"). The
wooden sheets also include a variety of textures: semi-gloss,
roughed up with steel wool, and sanded by 80 and 220 grit.
Furthermore, we additionally test more realistic objects in
our evaluation, including a chair, a table, a filing cabinet,
and a car. We also recruited ten human volunteers of differ-
ent body types, with half our testing performed in summer
clothing (thin t-shirts and shorts) and half of it performed
in a winter clothing (jackets/coats). We collected data at dif-
ferent orientations (40 to 150 degrees of tilt) and distances
(2m to 10m away from our setup), indoors and outdoors. We
perform thirty trials for each material at each configuration.
All our experiments are in indoor/outdoor multipath-rich
settings (walls, furniture etc.), including non line-of-sight
where objects were behind wooden partitions. We emphasize
that for each experiment, we train and test our system on
completely different subsets of both materials and testbed
locations. All of our experiments consider the presence of
multiple objects whose location and material we explicitly
track (up to four). We explicitly evaluate the effect of mobility
of the system in Sec. 9.5, which describes a proof-of-concept
evaluation of our system to sense obstacles hidden from view
around a UAV. Our UAV was measured to hover at 0.05 m/s
by default and moves at speeds up to 2 m/s (fast walking
human). Note that graph error bars show standard deviation
of location/sensing accuracy across multiple experiments.



Figure 8: Three vertical antennas vs. three mutually
perpendicular antennas, compared in material iden-
tification accuracy across 5 common classifiers. Note
significantly higher performance for perpendicular
antennas across the board, showing importance of po-
larization.

9 RESULTS
In this section, we describe the methods and results for our
experiments. We note that localization is a precondition for
material sensing, and both material sensing and localization
are required for object tracking, so the results are inherently
integrated but have been separated into material sensing and
localization to observe trends.

9.1 Microbenchmarks
IntuWition relies on two hypotheses: that polarimetry can
provide significant gain over spatial diversity as a material
sensing modality, and that Multi-Layer Perceptrons are the
best model for our application due to their analysis of higher-
dimensional features (compared to say, kNN) and their deep
architecture (allowing for more efficient and intelligent be-
havior than shallow ones [8].)
To test these hypotheses, we ran a preliminary experi-

ment. To confirm polarimetry, rather than spatial diversity,
was contributing to material sensing gain, we ran identical
trials with three vertical receiving antennas as well as three
perpendicularly oriented antennas. We collected data (specif-
ically, power ratios of receiving antennas) in a line-of-sight
lab setting to distinguish between three material types: birch,
aluminum, and human, at a variety of angles and distances,
to create our training set. Then, we rearranged the setup and
background furniture in the lab to create the test set. Using
this training and test data, we found material classification
accuracy for five different commonmachine learning models,
as shown in 8.
From this experiment, we draw two major takeaways:

The use of perpendicularly oriented antennas significantly

increases material sensing accuracy across all machine learn-
ing models, and that Multi-Layer Perceptrons are indeed
the ideal model for our experiment. We chose to build the
Multi-Layer Perceptron to have three hidden layers based
on our experimental analysis.

9.2 Object Localization
While localization is not the main focus of our paper, we
include localization accuracy to isolate different materials
and distances in Fig. 9 for completeness. For ground truth,
we affix fiducial markers to objects and implement a camera-
based fiducial tracking system using ARToolKit [2], which
reports a sub-millimeter baseline accuracy. The primary take-
away from our localization results is that our system can
typically isolate a line-of-sight (LOS) or non-line-of-sight
(NLOS) object that is at least a meter separated from other
reflectors.

9.3 Material Sensing
In this section, we discuss our core material sensing results
and polarimetry’s robustness to material thickness, surface
area, range, and texture.
(1) Overall Observations: In fig. 12(a), we can see IntuWition
has overall classification accuracies of 95% in LOS and 92% in
NLOS. The confusion matrix in fig. 11 further shows that our
system tends most often to confuse objects of the same class–
metals copper and aluminum, for example. We surmise our
system can only distinguish them at all due to the thin layer
of oxide that forms on the surface of a metal – aluminum
oxide is an insulator, while copper oxide is a semiconductor,
or perhaps due to polymer coatings used to prevent rusting.
We don’t anticipate this confusion to be of concern in some
contexts such as UAV path planning, since the exact type of
metal isn’t critical to the functionality of the system.

When comparing system performancewithmultiple tracked
objects, we see a negligible performance decrease for the two-
object case, a 5% decrease in classification accuracy in the
three-object case, and a 6% decrease in classification accuracy
in the four-object case.
(2) Material Sensing vs. Thicknesses: We use wood to
evaluate our system’s robustness to thickness, as metal only
has a skin depth of roughly 1µm atWi-Fi frequencies (mostly
acting as a surface reflector) and the material composition
of humans is heterogeneous.
Results: In Fig. 12(b), we observe that while 0.25" wood has
less layers of water to refract compared to the other two, our
system still maintains a robust classification accuracy higher
than 89% even in the NLOS scenario. Further, we observe
that a thickness increase of half an inch resulted in a 7% in-
crease in classification accuracy in line-of-sight settings. We



Figure 9: (a) Effect of Material Type on Localization Error: We observe our
system localizes wood and metal best, which we expect is due to the larger
surface areas of ourmaterial samples on averagewhen compared to humans,
for an overall mean error of 0.49m. (b) Effect of Round-trip Distance on Ma-
terial Sensing: we see accuracy slightly increases with distance at the begin-
ning, as the reflector becomes more distinguishable from the strong line-of-
sight signal, and eventually falls with distance.

Figure 10: Effect of system to re-
flector one-way distance on Lo-
calization Error: we see error in-
crease with distance, which we ex-
pect is due to less power being re-
ceived from reflectors as distance
increases.

Figure 11: This confusionmatrix shows our efficacy in
classifying between five different materials using our
Multi-layer Perceptron Classifier.

surmise that this is because there is more available material
to reflect and refract its unique polarization signature. This
leads us to believe that for non-metallic objects, the material
that composes the largest part of a reflector may impart the
most significant share of signature, as would be necessary
for identifying humans regardless of clothing.
(3) Material Sensing vs. Surface Area: We use a variety
of material surface areas to evaluate our system’s resilience
to different sizes. Specifically, we used various sizes of alu-
minum, copper, maple, and birch, as well as a human. These

ranged in surface area from 4ft2 to 16 ft2 at distances ranging
from 0-15 m.
Results: Fig. 12(c), shows that as surface area increases from
4ft2 to 16ft2, the classification accuracy increases from 88%
to 93% in NLOS and from 92% to 98% in LOS scenarios. That
is, reflective surfaces with larger cross-sectional areas are
easier to detect and classify, as expected. Note that lower
surface areas will progressively lower accuracy (a limitation
of IntuWition).
(4) Material Sensing vs. Range: To evaluate our system’s
robustness to range, we collected measurements at up to
20 m in round-trip distance from the system to the sensed
object.
Results: As shown in Fig. 10, we observe a slight increase in
our system’s accuracy in the beginning, which we surmise
is due to the increased ability of our system to resolve the
reflector given the strong line-of-sight signal. Then, there
is minimal impact in our system’s performance with up to
a round-trip distance of 12 m, following which we see a
gradual decrease as expected due to the reflector’s signal
being received more weakly.
(5) Material Sensing vs. Surface Texture: Finally, to eval-
uate our system’s robustness to texture, we collect measure-
ments from five surface textures of plywood of fixed size and
thickness: unfinished, roughed up with steel wool, painted
with semi-gloss, sanded to 80 grit (particle size of 201 µm),
and sanded to 220 grit (particle size of 70 µm).
Results: As shown in Fig. 13a, the surface texture of wood
does not play a statistically significant role in classification
accuracy.



Figure 12: (a) The effect of material type on classification accuracy: we see an average accuracy of 93.5%, with
higher errors for copper and aluminum (since they are more easily confused). (b) The effect of thickness of wood
on classification accuracy: we see lower accuracy as thickness decreases and fewer layers of material exists to
reflect its signature. (c) Material Sensing vs. Surface Area: we see accuracy increases with surface area as scattering
occurs at a larger scale.

Figure 13: (a) We show our classification network accuracy dealing with different surface textures of the same
material (wood). (b) We show our classification network accuracy dealing with real objects used in our daily life
of different material (wood is showed as red, metal is showed as blue). (c) We show the boards, furniture, and
objects used for these experiments.

Figure 14: Measures the accuracy of (a) Object recogni-
tion (drone vs. human); and (b) Localization at varying
UAV speeds.

9.4 Object Recognition of Real-Life
Obstacles

To test our system’s coarse applicability to real-life objects,
we train a new model to classify wood from metal using all
collected test and training data up until this point to create
the best model possible. We test this on new, unseen objects.
These include five of eachwooden andmetal objects of varied
material types (various wood and metal types): A rough
chipboard sheet, a table, a chair, an easel, and a bookshelf;
a filing cabinet, a shelving grate, a mesh furniture stand, a

matte PC tower, and the passenger-side-door of a car. These
were collected in a lab setting using a 4’x4’x1" wooden sheet
to occlude the setup for NLOS settings, with the exception of
the car which was collected in a yet-unseen parking garage
environment and was occluded by a 2’ concrete wall for
NLOS readings.
Results: As seen in Fig. 13, we see relatively high accuracy
across the board given that our system had only been trained
on metal and wooden sheets and these new objects were
unseen. We note that classification accuracy for the metals
appears to be slightly higher, with the exception of the metal
grate, whose structure likely introduces a lot of destructive
interference.

9.5 Application: Object Recognition from a
Mobile UAV

In this experiment, we demonstrate our system’s utility in
avoiding two types of obstacles: humans and other UAVs for
a proof-of-concept application: a delivery drone navigating
indoor and outdoor spaces. We are particularly interested
in capturing how the drone’s speed and vibrations affect



our system (see Sec. 5.2). Fortunately, recall that IntuWition
only needs the relative trajectory of the UAV, not its absolute
location at any point. Further, IntuWition applies a sliding
window filter (N=6) on the output of inertial and motion
sensors on UAVs across multiple measurements to mitigate
spurious readings. Since our drone is operating around 100
revolution per second which can be translated to 100 Hz of
the vibration of the drone [30], we additionally apply a high-
pass filter to remove this noise. We classify between drones
and humans from atop a drone at a few different speeds: 0, 0.5,
1.0, 1.5 and 2.0 meter per second along a circular trajectory
with a 5 m radius. Note that we do not test at higher speeds
owing to limitations of the UAV platform and to ensure user
safety. We further localize the reflector using 3-D MUSIC to
measure localization error in three dimensions.
Results: We notice that increasing UAV speed decreases the
accuracy of material sensing. One hypothesis is that because
the rate of sweeping Wi-Fi frequencies is around 2 Hz, in-
creased vibration of the propellers impacts our error in local-
ization which in turn influences material sensing accuracy.
Our MLP model has a prediction latency around 0.04 second
(25 Hz). We observe that our accuracy falls off with speed,
but we are still able to achieve 89% mean accuracy in classi-
fying between humans and drones at speeds of up to 2 m/s
and mean localization accuracy of 0.87 m.

10 CONCLUSION AND FUTUREWORK
This paper presents IntuWition, a system that explores sens-
ing the material and location of hidden objects in the envi-
ronment using commodityWi-Fi radios. IntuWition analyzes
the change in polarization of the wireless signals as they re-
flect off different objects surrounding a Wi-Fi device to infer
their material composition. A detailed evaluation demon-
strates promising accuracy in both localization and material
identification.

While IntuWition categorizes between five types of mate-
rials, we believe future work can take this much further. We
believe high-bandwidth radios such as 802.11ad can greatly
improve material sensing resolution. We also leave for future
work developing optimized hardware that performs all mate-
rial processing on-board the device, as opposed to the cloud.
In the context of UAVs, fusing information with on-board
cameras and dealing with object recognition system design
challenges on robotic platforms remains an important task
for future work.
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